import torch from PIL import Image from transformers import AutoModel, CLIPImageProcessor import gradio as gr # Force the use of GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model = AutoModel.from_pretrained( 'OpenGVLab/InternVL2_5-1B', torch_dtype=torch.float16, # Use float16 for GPU efficiency low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=True # Enable Flash Attention for improved performance ).to(device).eval() # Explicitly move the model to GPU # Load the image processor image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B') # Define the function to process the image and generate outputs def process_image(image): try: # Convert uploaded image to RGB image = image.convert('RGB') # Preprocess the image pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(device) # Ensure tensor is on GPU # Run the model with torch.no_grad(): # Disable gradient calculations for inference outputs = model(pixel_values) # Assuming the model returns embeddings or features return f"Output Shape: {outputs.last_hidden_state.shape}" except Exception as e: return f"Error: {str(e)}" # Create the Gradio interface demo = gr.Interface( fn=process_image, # Function to process the input inputs=gr.Image(type="pil"), # Accepts images as input outputs=gr.Textbox(label="Model Output"), # Displays model output title="InternVL2_5 Demo", description="Upload an image to process it using the InternVL2_5-1B model from OpenGVLab." ) # Launch the demo if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)