Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
import numpy as np
|
5 |
import re
|
6 |
-
import streamlit as st
|
7 |
from difflib import SequenceMatcher
|
8 |
from transformers import pipeline
|
9 |
|
@@ -19,17 +18,18 @@ pipe = pipeline(
|
|
19 |
chunk_length_s=30,
|
20 |
device=device,
|
21 |
generate_kwargs={
|
22 |
-
"no_repeat_ngram_size":
|
23 |
-
"repetition_penalty": 1.
|
24 |
-
"temperature": 0.
|
25 |
-
"top_p": 0.
|
26 |
-
"top_k":
|
|
|
|
|
27 |
}
|
28 |
)
|
29 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
30 |
|
31 |
-
|
32 |
-
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
|
33 |
|
34 |
def is_similar(a, b, threshold=0.8):
|
35 |
return SequenceMatcher(None, a, b).ratio() > threshold
|
@@ -47,57 +47,41 @@ def remove_punctuation(text):
|
|
47 |
|
48 |
def transcribe_audio(audio_path):
|
49 |
waveform, sample_rate = torchaudio.load(audio_path)
|
50 |
-
|
51 |
if waveform.shape[0] > 1:
|
52 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
53 |
-
|
54 |
waveform = waveform.squeeze(0).numpy()
|
55 |
duration = waveform.shape[0] / sample_rate
|
56 |
-
|
57 |
if duration > 60:
|
58 |
chunk_size = sample_rate * 55
|
59 |
step_size = sample_rate * 50
|
60 |
results = []
|
61 |
-
|
62 |
for start in range(0, waveform.shape[0], step_size):
|
63 |
chunk = waveform[start:start + chunk_size]
|
64 |
if chunk.shape[0] == 0:
|
65 |
break
|
66 |
transcript = pipe({"sampling_rate": sample_rate, "raw": chunk})["text"]
|
67 |
results.append(remove_punctuation(transcript))
|
68 |
-
|
69 |
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
70 |
-
|
71 |
return remove_punctuation(remove_repeated_phrases(pipe({"sampling_rate": sample_rate, "raw": waveform})["text"]))
|
72 |
|
73 |
def rate_quality(text):
|
74 |
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
75 |
results = rating_pipe(chunks, batch_size=4)
|
76 |
-
|
77 |
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
78 |
processed_results = [label_map.get(res["label"], "Unknown") for res in results]
|
79 |
-
|
80 |
return max(set(processed_results), key=processed_results.count)
|
81 |
|
82 |
# Streamlit UI
|
83 |
-
st.title("Audio Transcription
|
84 |
-
|
85 |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
temp_audio_path = "temp_audio.wav"
|
91 |
-
with open(temp_audio_path, "wb") as f:
|
92 |
f.write(uploaded_file.read())
|
93 |
-
|
94 |
st.write("Processing audio...")
|
95 |
-
transcript = transcribe_audio(
|
96 |
st.subheader("Transcript")
|
97 |
st.write(transcript)
|
98 |
-
|
99 |
quality_rating = rate_quality(transcript)
|
100 |
st.subheader("Quality Rating")
|
101 |
st.write(quality_rating)
|
102 |
-
|
103 |
-
os.remove(temp_audio_path)
|
|
|
1 |
+
import streamlit as st
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
import numpy as np
|
5 |
import re
|
|
|
6 |
from difflib import SequenceMatcher
|
7 |
from transformers import pipeline
|
8 |
|
|
|
18 |
chunk_length_s=30,
|
19 |
device=device,
|
20 |
generate_kwargs={
|
21 |
+
"no_repeat_ngram_size": 4,
|
22 |
+
"repetition_penalty": 1.15,
|
23 |
+
"temperature": 0.5,
|
24 |
+
"top_p": 0.97,
|
25 |
+
"top_k": 40,
|
26 |
+
"max_new_tokens": 300,
|
27 |
+
"do_sample": True
|
28 |
}
|
29 |
)
|
30 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
31 |
|
32 |
+
rating_pipe = pipeline("text-classification", model="MonkeyDLLLLLLuffy/CustomModel-multilingual-sentiment-analysis", device=device)
|
|
|
33 |
|
34 |
def is_similar(a, b, threshold=0.8):
|
35 |
return SequenceMatcher(None, a, b).ratio() > threshold
|
|
|
47 |
|
48 |
def transcribe_audio(audio_path):
|
49 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
50 |
if waveform.shape[0] > 1:
|
51 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
|
|
52 |
waveform = waveform.squeeze(0).numpy()
|
53 |
duration = waveform.shape[0] / sample_rate
|
|
|
54 |
if duration > 60:
|
55 |
chunk_size = sample_rate * 55
|
56 |
step_size = sample_rate * 50
|
57 |
results = []
|
|
|
58 |
for start in range(0, waveform.shape[0], step_size):
|
59 |
chunk = waveform[start:start + chunk_size]
|
60 |
if chunk.shape[0] == 0:
|
61 |
break
|
62 |
transcript = pipe({"sampling_rate": sample_rate, "raw": chunk})["text"]
|
63 |
results.append(remove_punctuation(transcript))
|
|
|
64 |
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
|
|
65 |
return remove_punctuation(remove_repeated_phrases(pipe({"sampling_rate": sample_rate, "raw": waveform})["text"]))
|
66 |
|
67 |
def rate_quality(text):
|
68 |
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
69 |
results = rating_pipe(chunks, batch_size=4)
|
|
|
70 |
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
71 |
processed_results = [label_map.get(res["label"], "Unknown") for res in results]
|
|
|
72 |
return max(set(processed_results), key=processed_results.count)
|
73 |
|
74 |
# Streamlit UI
|
75 |
+
st.title("Audio Transcription & Quality Rating")
|
|
|
76 |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
|
77 |
+
if uploaded_file:
|
78 |
+
st.audio(uploaded_file, format='audio/wav')
|
79 |
+
with open("temp_audio.wav", "wb") as f:
|
|
|
|
|
|
|
80 |
f.write(uploaded_file.read())
|
|
|
81 |
st.write("Processing audio...")
|
82 |
+
transcript = transcribe_audio("temp_audio.wav")
|
83 |
st.subheader("Transcript")
|
84 |
st.write(transcript)
|
|
|
85 |
quality_rating = rate_quality(transcript)
|
86 |
st.subheader("Quality Rating")
|
87 |
st.write(quality_rating)
|
|
|
|