Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,61 @@
|
|
1 |
-
import streamlit as st
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
import os
|
|
|
|
|
|
|
5 |
from transformers import pipeline
|
6 |
|
7 |
# Device setup
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
-
# Load Whisper model for
|
11 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
12 |
language = "zh"
|
13 |
-
|
14 |
task="automatic-speech-recognition",
|
15 |
model=MODEL_NAME,
|
16 |
chunk_length_s=60,
|
17 |
device=device
|
18 |
)
|
19 |
-
|
20 |
-
|
21 |
-
# Load Summarization model
|
22 |
-
summarizer = pipeline("summarization", model="Ayaka/bart-base-cantonese")
|
23 |
|
24 |
# Load quality rating model
|
25 |
rating_pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
st.title("π Customer Service Conversation Quality Analyzer")
|
30 |
-
st.write("Upload a Cantonese audio file to transcribe, summarize, and evaluate its quality.")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
def transcribe_audio(audio_path):
|
36 |
-
|
37 |
-
|
38 |
-
def summarize_text(text):
|
39 |
-
return summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
40 |
|
41 |
def rate_quality(text):
|
42 |
-
result = rating_pipe(text
|
43 |
-
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
44 |
return label_map.get(result["label"], "Unknown")
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
transcript = transcribe_audio(temp_audio_path)
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
st.subheader("π Summary")
|
60 |
-
st.write(summary)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
st.subheader("π Quality Rating")
|
65 |
-
st.write(f"**{quality_rating}**")
|
66 |
|
67 |
-
|
|
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import os
|
4 |
+
import re
|
5 |
+
import streamlit as st
|
6 |
+
from difflib import SequenceMatcher
|
7 |
from transformers import pipeline
|
8 |
|
9 |
# Device setup
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Load Whisper model for transcription
|
13 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
14 |
language = "zh"
|
15 |
+
pipe = pipeline(
|
16 |
task="automatic-speech-recognition",
|
17 |
model=MODEL_NAME,
|
18 |
chunk_length_s=60,
|
19 |
device=device
|
20 |
)
|
21 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
|
|
|
|
|
|
22 |
|
23 |
# Load quality rating model
|
24 |
rating_pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
25 |
|
26 |
+
# Sentiment label mapping
|
27 |
+
label_map = {"Negative": "Very Poor", "Neutral": "Neutral", "Positive": "Very Good"}
|
|
|
|
|
28 |
|
29 |
+
def remove_punctuation(text):
|
30 |
+
return re.sub(r'[^\w\s]', '', text)
|
31 |
|
32 |
def transcribe_audio(audio_path):
|
33 |
+
transcript = pipe(audio_path)["text"]
|
34 |
+
return remove_punctuation(transcript)
|
|
|
|
|
35 |
|
36 |
def rate_quality(text):
|
37 |
+
result = rating_pipe(text)[0]
|
|
|
38 |
return label_map.get(result["label"], "Unknown")
|
39 |
|
40 |
+
# Streamlit UI
|
41 |
+
st.set_page_config(page_title="Cantonese Audio Transcription & Analysis", layout="centered")
|
42 |
+
st.title("π£οΈ Cantonese Audio Transcriber & Sentiment Analyzer")
|
43 |
+
st.markdown("Upload your Cantonese audio file, and we will transcribe and analyze its sentiment.")
|
44 |
+
|
45 |
+
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, etc.)", type=["wav", "mp3", "m4a"])
|
46 |
+
if uploaded_file is not None:
|
47 |
+
with st.spinner("Processing audio..."):
|
48 |
+
temp_audio_path = "temp_audio.wav"
|
49 |
+
with open(temp_audio_path, "wb") as f:
|
50 |
+
f.write(uploaded_file.getbuffer())
|
51 |
transcript = transcribe_audio(temp_audio_path)
|
52 |
+
sentiment = rate_quality(transcript)
|
53 |
+
os.remove(temp_audio_path)
|
54 |
|
55 |
+
st.subheader("Transcription")
|
56 |
+
st.text_area("", transcript, height=150)
|
|
|
|
|
57 |
|
58 |
+
st.subheader("Sentiment Analysis")
|
59 |
+
st.markdown(f"### π Sentiment: **{sentiment}**")
|
|
|
|
|
60 |
|
61 |
+
st.success("Processing complete! π")
|