xujinheng666's picture
Update app.py
3521f10 verified
raw
history blame
2.06 kB
import torch
import torchaudio
import os
import re
import streamlit as st
from difflib import SequenceMatcher
from transformers import pipeline
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Whisper model for transcription
MODEL_NAME = "alvanlii/whisper-small-cantonese"
language = "zh"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=60,
device=device
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
# Load quality rating model
rating_pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
# Sentiment label mapping
label_map = {"Negative": "Very Poor", "Neutral": "Neutral", "Positive": "Very Good"}
def remove_punctuation(text):
return re.sub(r'[^\w\s]', '', text)
def transcribe_audio(audio_path):
transcript = pipe(audio_path)["text"]
return remove_punctuation(transcript)
def rate_quality(text):
result = rating_pipe(text)[0]
return label_map.get(result["label"], "Unknown")
# Streamlit UI
st.set_page_config(page_title="Cantonese Audio Transcription & Analysis", layout="centered")
st.title("πŸ—£οΈ Cantonese Audio Transcriber & Sentiment Analyzer")
st.markdown("Upload your Cantonese audio file, and we will transcribe and analyze its sentiment.")
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, etc.)", type=["wav", "mp3", "m4a"])
if uploaded_file is not None:
with st.spinner("Processing audio..."):
temp_audio_path = "temp_audio.wav"
with open(temp_audio_path, "wb") as f:
f.write(uploaded_file.getbuffer())
transcript = transcribe_audio(temp_audio_path)
sentiment = rate_quality(transcript)
os.remove(temp_audio_path)
st.subheader("Transcription")
st.text_area("", transcript, height=150)
st.subheader("Sentiment Analysis")
st.markdown(f"### 🎭 Sentiment: **{sentiment}**")
st.success("Processing complete! πŸŽ‰")