|
import torch |
|
import torchaudio |
|
import os |
|
import re |
|
import streamlit as st |
|
from difflib import SequenceMatcher |
|
from transformers import pipeline |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
MODEL_NAME = "alvanlii/whisper-small-cantonese" |
|
language = "zh" |
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=60, |
|
device=device |
|
) |
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe") |
|
|
|
|
|
rating_pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis") |
|
|
|
|
|
label_map = {"Negative": "Very Poor", "Neutral": "Neutral", "Positive": "Very Good"} |
|
|
|
def remove_punctuation(text): |
|
return re.sub(r'[^\w\s]', '', text) |
|
|
|
def transcribe_audio(audio_path): |
|
transcript = pipe(audio_path)["text"] |
|
return remove_punctuation(transcript) |
|
|
|
def rate_quality(text): |
|
result = rating_pipe(text)[0] |
|
return label_map.get(result["label"], "Unknown") |
|
|
|
|
|
st.set_page_config(page_title="Cantonese Audio Transcription & Analysis", layout="centered") |
|
st.title("π£οΈ Cantonese Audio Transcriber & Sentiment Analyzer") |
|
st.markdown("Upload your Cantonese audio file, and we will transcribe and analyze its sentiment.") |
|
|
|
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, etc.)", type=["wav", "mp3", "m4a"]) |
|
if uploaded_file is not None: |
|
with st.spinner("Processing audio..."): |
|
temp_audio_path = "temp_audio.wav" |
|
with open(temp_audio_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
transcript = transcribe_audio(temp_audio_path) |
|
sentiment = rate_quality(transcript) |
|
os.remove(temp_audio_path) |
|
|
|
st.subheader("Transcription") |
|
st.text_area("", transcript, height=150) |
|
|
|
st.subheader("Sentiment Analysis") |
|
st.markdown(f"### π Sentiment: **{sentiment}**") |
|
|
|
st.success("Processing complete! π") |
|
|