File size: 2,905 Bytes
6e645b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torchaudio
import os

def load_models():
    st.session_state.transcription_pipe = pipeline(
        task="automatic-speech-recognition",
        model="alvanlii/whisper-small-cantonese",
        chunk_length_s=60,
        device="cuda" if torch.cuda.is_available() else "cpu"
    )
    st.session_state.transcription_pipe.model.config.forced_decoder_ids = st.session_state.transcription_pipe.tokenizer.get_decoder_prompt_ids(language="zh", task="transcribe")
    
    st.session_state.translation_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
    st.session_state.translation_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
    
    st.session_state.summary_pipe = pipeline("text-summarization", model="facebook/bart-large-cnn")
    
    st.session_state.rating_pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")

def transcribe_audio(audio_path):
    pipe = st.session_state.transcription_pipe
    return pipe(audio_path)["text"]

def translate_text(text):
    tokenizer = st.session_state.translation_tokenizer
    model = st.session_state.translation_model
    inputs = tokenizer(text, return_tensors="pt")
    outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

def summarize_text(text):
    return st.session_state.summary_pipe(text)[0]['summary_text']

def rate_quality(text):
    result = st.session_state.rating_pipe(text)[0]
    label_map = {"LABEL_0": "Poor", "LABEL_1": "Average", "LABEL_2": "Good"}
    return label_map.get(result["label"], "Unknown")

def main():
    st.title("Audio Processing & Conversation Quality Rating")
    
    if "transcription_pipe" not in st.session_state:
        with st.spinner("Loading models..."):
            load_models()
    
    uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"])
    
    if uploaded_file is not None:
        with st.spinner("Processing audio..."):
            file_path = "temp_audio.wav"
            with open(file_path, "wb") as f:
                f.write(uploaded_file.read())
            
            transcript = transcribe_audio(file_path)
            translation = translate_text(transcript)
            summary = summarize_text(translation)
            rating = rate_quality(translation)
            
            os.remove(file_path)
        
        st.subheader("Transcription")
        st.write(transcript)
        
        st.subheader("Translation (English)")
        st.write(translation)
        
        st.subheader("Summary")
        st.write(summary)
        
        st.subheader("Conversation Quality Rating")
        st.write(rating)

if __name__ == "__main__":
    main()