File size: 3,596 Bytes
6e645b6
 
 
 
 
0eb093e
2ffc60e
6e645b6
0eb093e
 
c74678d
0eb093e
 
 
 
 
6e645b6
 
0eb093e
 
 
 
 
 
2ffc60e
0eb093e
 
 
 
 
 
 
 
6e645b6
 
0eb093e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ffc60e
95e8e86
6e645b6
2ffc60e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e645b6
2ffc60e
 
 
 
 
 
 
 
 
6e645b6
0eb093e
 
 
 
 
 
 
 
 
 
 
6e645b6
0eb093e
 
 
6e645b6
0eb093e
 
6e645b6
0eb093e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torchaudio
import os
import re
import jieba

# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load Whisper model for transcription
MODEL_NAME = "alvanlii/whisper-small-cantonese"
language = "zh"
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")

def transcribe_audio(audio_path):
    waveform, sample_rate = torchaudio.load(audio_path)
    duration = waveform.shape[1] / sample_rate
    
    if duration > 60:
        results = []
        for start in range(0, int(duration), 50):
            end = min(start + 60, int(duration))
            chunk = waveform[:, start * sample_rate:end * sample_rate]
            temp_filename = f"temp_chunk_{start}.wav"
            torchaudio.save(temp_filename, chunk, sample_rate)
            result = pipe(temp_filename)["text"]
            results.append(result)
            os.remove(temp_filename)
        return " ".join(results)
    
    return pipe(audio_path)["text"]

# Load translation model
tokenizer = AutoTokenizer.from_pretrained("botisan-ai/mt5-translate-yue-zh")
model = AutoModelForSeq2SeqLM.from_pretrained("botisan-ai/mt5-translate-yue-zh").to(device)

def split_sentences(text):
    return [s for s in re.split(r'(?<=[。!?])', text) if s]

def translate(text):
    sentences = split_sentences(text)
    translations = []
    for sentence in sentences:
        inputs = tokenizer(sentence, return_tensors="pt").to(device)
        outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
        translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
    return " ".join(translations)

# Load quality rating model
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")

def split_text(text, max_length=512):
    words = list(jieba.cut(text))  
    chunks, current_chunk = [], ""

    for word in words:
        if len(current_chunk) + len(word) < max_length:
            current_chunk += word
        else:
            chunks.append(current_chunk)
            current_chunk = word

    if current_chunk:
        chunks.append(current_chunk)

    return chunks

def rate_quality(text):
    chunks = split_text(text)
    results = []

    for chunk in chunks:
        result = rating_pipe(chunk)[0]
        label_map = {"LABEL_0": "Poor", "LABEL_1": "Neutral", "LABEL_2": "Good"}
        results.append(label_map.get(result["label"], "Unknown"))

    return max(set(results), key=results.count)  # Return most frequent rating

# Streamlit UI
st.title("Cantonese Audio Analysis")
st.write("Upload a Cantonese audio file to transcribe, translate, and rate the conversation quality.")

uploaded_file = st.file_uploader("Upload Audio File", type=["wav", "mp3", "flac"])

if uploaded_file is not None:
    st.audio(uploaded_file, format="audio/wav")
    temp_audio_path = "uploaded_audio.wav"
    with open(temp_audio_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    
    st.write("### Processing...")
    transcript = transcribe_audio(temp_audio_path)
    st.write("**Transcript:**", transcript)
    
    translated_text = translate(transcript)
    st.write("**Translation:**", translated_text)
    
    quality_rating = rate_quality(translated_text)
    st.write("**Quality Rating:**", quality_rating)
    
    os.remove(temp_audio_path)