Spaces:
Runtime error
Runtime error
Commit
·
9bab39e
0
Parent(s):
Duplicate from xu1998hz/sescore
Browse files- .gitattributes +33 -0
- README.md +46 -0
- app.py +73 -0
- description.md +59 -0
- img/logo_sescore.png +0 -0
- requirements.txt +3 -0
- sescore.py +139 -0
- tests.py +17 -0
.gitattributes
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SEScore
|
3 |
+
datasets:
|
4 |
+
- null
|
5 |
+
tags:
|
6 |
+
- evaluate
|
7 |
+
- metric
|
8 |
+
description: 'SEScore: a text generation evaluation metric'
|
9 |
+
sdk: gradio
|
10 |
+
sdk_version: 3.0.2
|
11 |
+
app_file: app.py
|
12 |
+
pinned: false
|
13 |
+
duplicated_from: xu1998hz/sescore
|
14 |
+
---
|
15 |
+
|
16 |
+
# Metric Card for SEScore
|
17 |
+

|
18 |
+
|
19 |
+
## Metric Description
|
20 |
+
*SEScore is an unsupervised learned evaluation metric trained on synthesized dataset*
|
21 |
+
|
22 |
+
## How to Use
|
23 |
+
|
24 |
+
*Provide simplest possible example for using the metric*
|
25 |
+
|
26 |
+
### Inputs
|
27 |
+
*SEScore takes input of predictions (a list of candidate translations) and references (a list of reference translations).*
|
28 |
+
|
29 |
+
### Output Values
|
30 |
+
|
31 |
+
*Output value is between 0 to -25*
|
32 |
+
|
33 |
+
#### Values from Popular Papers
|
34 |
+
|
35 |
+
|
36 |
+
### Examples
|
37 |
+
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
38 |
+
|
39 |
+
## Limitations and Bias
|
40 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
41 |
+
|
42 |
+
## Citation
|
43 |
+
*Cite the source where this metric was introduced.*
|
44 |
+
|
45 |
+
## Further References
|
46 |
+
*Add any useful further references.*
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_gradio_data, parse_test_cases
|
5 |
+
|
6 |
+
|
7 |
+
def launch_gradio_widget(metric):
|
8 |
+
"""Launches `metric` widget with Gradio."""
|
9 |
+
|
10 |
+
try:
|
11 |
+
import gradio as gr
|
12 |
+
except ImportError as error:
|
13 |
+
logger.error("To create a metric widget with Gradio make sure gradio is installed.")
|
14 |
+
raise error
|
15 |
+
|
16 |
+
local_path = Path(sys.path[0])
|
17 |
+
# if there are several input types, use first as default.
|
18 |
+
if isinstance(metric.features, list):
|
19 |
+
(feature_names, feature_types) = zip(*metric.features[0].items())
|
20 |
+
else:
|
21 |
+
(feature_names, feature_types) = zip(*metric.features.items())
|
22 |
+
gradio_input_types = infer_gradio_input_types(feature_types)
|
23 |
+
|
24 |
+
def compute(data):
|
25 |
+
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
26 |
+
|
27 |
+
header_html = '''<div style="max-width:800px; margin:auto; float:center; margin-top:0; margin-bottom:0; padding:0;">
|
28 |
+
<img src="https://huggingface.co/spaces/xu1998hz/sescore/resolve/main/img/logo_sescore.png" style="margin:0; padding:0; margin-top:-10px; margin-bottom:-50px;">
|
29 |
+
</div>
|
30 |
+
<h2 style='margin-top: 5pt; padding-top:10pt;'>About <i>SEScore</i></h2>
|
31 |
+
|
32 |
+
<p><b>SEScore</b> is a reference-based text-generation evaluation metric that requires no pre-human-annotated error data,
|
33 |
+
described in our paper <a href="https://arxiv.org/abs/2210.05035"><b>"Not All Errors are Equal: Learning Text Generation Metrics using
|
34 |
+
Stratified Error Synthesis"</b></a> from EMNLP 2022.</p>
|
35 |
+
|
36 |
+
<p>Its effectiveness over prior methods like BLEU, BERTScore, BARTScore, PRISM, COMET and BLEURT has been demonstrated on a diverse set of language generation tasks, including
|
37 |
+
translation, captioning, and web text generation. <a href="https://twitter.com/LChoshen/status/1580136005654700033">Readers have even described SEScore as "one unsupervised evaluation to rule them all"</a>
|
38 |
+
and we are very excited to share it with you!</p>
|
39 |
+
|
40 |
+
<h2 style='margin-top: 10pt; padding-top:0;'>Try it yourself!</h2>
|
41 |
+
<p>Provide sample (gold) reference text and (model output) predicted text below and see how SEScore rates them! It is most performant
|
42 |
+
in a relative ranking setting, so in general <b>it will rank better predictions higher than worse ones.</b> Providing useful
|
43 |
+
absolute numbers based on SEScore is an ongoing direction of investigation.</p>
|
44 |
+
'''.replace('\n',' ')
|
45 |
+
|
46 |
+
|
47 |
+
tail_markdown = parse_readme(local_path / "description.md")
|
48 |
+
|
49 |
+
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=compute,
|
52 |
+
inputs=gr.inputs.Dataframe(
|
53 |
+
headers=feature_names,
|
54 |
+
col_count=len(feature_names),
|
55 |
+
row_count=2,
|
56 |
+
datatype=json_to_string_type(gradio_input_types),
|
57 |
+
),
|
58 |
+
outputs=gr.outputs.Textbox(label=metric.name),
|
59 |
+
description=header_html,
|
60 |
+
#title=f"SEScore Metric Usage Example",
|
61 |
+
article=tail_markdown,
|
62 |
+
# TODO: load test cases and use them to populate examples
|
63 |
+
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
|
64 |
+
)
|
65 |
+
|
66 |
+
print(dir(iface))
|
67 |
+
|
68 |
+
iface.launch()
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
module = evaluate.load("xu1998hz/sescore")
|
73 |
+
launch_gradio_widget(module)
|
description.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Installation and usage
|
2 |
+
|
3 |
+
```bash
|
4 |
+
pip install -r requirements.txt
|
5 |
+
```
|
6 |
+
|
7 |
+
Minimal example (evaluating English text generation)
|
8 |
+
```python
|
9 |
+
import evaluate
|
10 |
+
sescore = evaluate.load("xu1998hz/sescore")
|
11 |
+
score = sescore.compute(
|
12 |
+
references=['sescore is a simple but effective next-generation text evaluation metric'],
|
13 |
+
predictions=['sescore is simple effective text evaluation metric for next generation']
|
14 |
+
)
|
15 |
+
```
|
16 |
+
|
17 |
+
*SEScore* compares a list of references (gold translation/generated output examples) with a same-length list of candidate generated samples. Currently, the output range is learned and scores are most useful in relative ranking scenarios rather than absolute comparisons. We are producing a series of rescaling options to make absolute SEScore-based scaling more effective.
|
18 |
+
|
19 |
+
|
20 |
+
### Available pre-trained models
|
21 |
+
|
22 |
+
Currently, the following language/model pairs are available:
|
23 |
+
|
24 |
+
| Language | pretrained data | pretrained model link |
|
25 |
+
|----------|-----------------|-----------------------|
|
26 |
+
| English | MT | [xu1998hz/sescore_english_mt](https://huggingface.co/xu1998hz/sescore_english_mt) |
|
27 |
+
| German | MT | [xu1998hz/sescore_german_mt](https://huggingface.co/xu1998hz/sescore_german_mt) |
|
28 |
+
| English | webNLG17 | [xu1998hz/sescore_english_webnlg17](https://huggingface.co/xu1998hz/sescore_english_webnlg17) |
|
29 |
+
| English | CoCo captions | [xu1998hz/sescore_english_coco](https://huggingface.co/xu1998hz/sescore_english_coco) |
|
30 |
+
|
31 |
+
|
32 |
+
Please contact repo maintainer Wenda Xu to add your models!
|
33 |
+
|
34 |
+
## Limitations
|
35 |
+
|
36 |
+
*SEScore* is trained on synthetic data in-domain.
|
37 |
+
Although this data is generated to simulate user-relevant errors like deletion and spurious insertion, it may be limited in its ability to simulate humanlike errors.
|
38 |
+
Model applicability is domain-specific (e.g., CoCo caption-trained model will be better for captioning than MT-trained).
|
39 |
+
|
40 |
+
We are in the process of producing and benchmarking general language-level *SEScore* variants.
|
41 |
+
|
42 |
+
## Citation
|
43 |
+
|
44 |
+
If you find our work useful, please cite the following:
|
45 |
+
|
46 |
+
```bibtex
|
47 |
+
@inproceedings{xu-etal-2022-not,
|
48 |
+
title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis},
|
49 |
+
author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang},
|
50 |
+
booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
|
51 |
+
month={dec},
|
52 |
+
year={2022},
|
53 |
+
url={https://arxiv.org/abs/2210.05035}
|
54 |
+
}
|
55 |
+
```
|
56 |
+
|
57 |
+
## Acknowledgements
|
58 |
+
|
59 |
+
The work of the [COMET](https://github.com/Unbabel/COMET) maintainers at [Unbabel](https://duckduckgo.com/?t=ffab&q=unbabel&ia=web) has been instrumental in producing SEScore.
|
img/logo_sescore.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
unbabel-comet
|
3 |
+
torch
|
sescore.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""SEScore: a text generation evaluation metric """
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
import comet
|
20 |
+
from typing import Dict
|
21 |
+
import torch
|
22 |
+
from comet.encoders.base import Encoder
|
23 |
+
from comet.encoders.bert import BERTEncoder
|
24 |
+
from transformers import AutoModel, AutoTokenizer
|
25 |
+
|
26 |
+
class robertaEncoder(BERTEncoder):
|
27 |
+
def __init__(self, pretrained_model: str) -> None:
|
28 |
+
super(Encoder, self).__init__()
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
30 |
+
self.model = AutoModel.from_pretrained(
|
31 |
+
pretrained_model, add_pooling_layer=False
|
32 |
+
)
|
33 |
+
self.model.encoder.output_hidden_states = True
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def from_pretrained(cls, pretrained_model: str) -> Encoder:
|
37 |
+
return robertaEncoder(pretrained_model)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs
|
41 |
+
) -> Dict[str, torch.Tensor]:
|
42 |
+
last_hidden_states, _, all_layers = self.model(
|
43 |
+
input_ids=input_ids,
|
44 |
+
attention_mask=attention_mask,
|
45 |
+
output_hidden_states=True,
|
46 |
+
return_dict=False,
|
47 |
+
)
|
48 |
+
return {
|
49 |
+
"sentemb": last_hidden_states[:, 0, :],
|
50 |
+
"wordemb": last_hidden_states,
|
51 |
+
"all_layers": all_layers,
|
52 |
+
"attention_mask": attention_mask,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
# TODO: Add BibTeX citation
|
57 |
+
_CITATION = """\
|
58 |
+
@inproceedings{xu-etal-2022-not,
|
59 |
+
title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis},
|
60 |
+
author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang},
|
61 |
+
booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
|
62 |
+
month={dec},
|
63 |
+
year={2022},
|
64 |
+
url={https://arxiv.org/abs/2210.05035}
|
65 |
+
}
|
66 |
+
"""
|
67 |
+
|
68 |
+
_DESCRIPTION = """\
|
69 |
+
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_KWARGS_DESCRIPTION = """
|
73 |
+
Calculates how good are predictions given some references
|
74 |
+
Args:
|
75 |
+
predictions: list of candidate outputs
|
76 |
+
references: list of references
|
77 |
+
Returns:
|
78 |
+
{"mean_score": mean_score, "scores": scores}
|
79 |
+
|
80 |
+
Examples:
|
81 |
+
>>> import evaluate
|
82 |
+
>>> sescore = evaluate.load("xu1998hz/sescore")
|
83 |
+
>>> score = sescore.compute(
|
84 |
+
references=['sescore is a simple but effective next-generation text evaluation metric'],
|
85 |
+
predictions=['sescore is simple effective text evaluation metric for next generation']
|
86 |
+
)
|
87 |
+
"""
|
88 |
+
|
89 |
+
# TODO: Define external resources urls if needed
|
90 |
+
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
91 |
+
|
92 |
+
|
93 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
94 |
+
class SEScore(evaluate.Metric):
|
95 |
+
"""SEScore"""
|
96 |
+
|
97 |
+
def _info(self):
|
98 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
99 |
+
return evaluate.MetricInfo(
|
100 |
+
# This is the description that will appear on the modules page.
|
101 |
+
module_type="metric",
|
102 |
+
description=_DESCRIPTION,
|
103 |
+
citation=_CITATION,
|
104 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
105 |
+
# This defines the format of each prediction and reference
|
106 |
+
features=datasets.Features({
|
107 |
+
'predictions': datasets.Value("string", id="sequence"),
|
108 |
+
'references': datasets.Value("string", id="sequence"),
|
109 |
+
}),
|
110 |
+
# Homepage of the module for documentation
|
111 |
+
homepage="http://module.homepage",
|
112 |
+
# Additional links to the codebase or references
|
113 |
+
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
114 |
+
reference_urls=["http://path.to.reference.url/new_module"]
|
115 |
+
)
|
116 |
+
|
117 |
+
def _download_and_prepare(self, dl_manager):
|
118 |
+
"""download SEScore checkpoints to compute the scores"""
|
119 |
+
# Download SEScore checkpoint
|
120 |
+
from comet import load_from_checkpoint
|
121 |
+
import os
|
122 |
+
from huggingface_hub import snapshot_download
|
123 |
+
# initialize roberta into str2encoder
|
124 |
+
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder
|
125 |
+
print("config name: ", self.config_name)
|
126 |
+
if self.config_name == "default":
|
127 |
+
destination = snapshot_download(repo_id="xu1998hz/sescore_english_mt", revision="main")
|
128 |
+
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_english_mt.ckpt')
|
129 |
+
else:
|
130 |
+
print("Config name is not supported!")
|
131 |
+
|
132 |
+
def _compute(self, predictions, references, gpus=None, progress_bar=False):
|
133 |
+
if gpus is None:
|
134 |
+
gpus = 1 if torch.cuda.is_available() else 0
|
135 |
+
|
136 |
+
data = {"src": references, "mt": predictions}
|
137 |
+
data = [dict(zip(data, t)) for t in zip(*data.values())]
|
138 |
+
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar)
|
139 |
+
return {"mean_score": mean_score, "scores": scores}
|
tests.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
test_cases = [
|
2 |
+
{
|
3 |
+
"predictions": [0, 0],
|
4 |
+
"references": [1, 1],
|
5 |
+
"result": {"metric_score": 0}
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"predictions": [1, 1],
|
9 |
+
"references": [1, 1],
|
10 |
+
"result": {"metric_score": 1}
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"predictions": [1, 0],
|
14 |
+
"references": [1, 1],
|
15 |
+
"result": {"metric_score": 0.5}
|
16 |
+
}
|
17 |
+
]
|