DCGAN / app.py
xinwen's picture
Update app.py
ed4946b verified
import gradio as gr
import os
os.system("git clone https://github.com/megvii-research/NAFNet")
os.system("mv NAFNet/* ./")
os.system("mv *.pth experiments/pretrained_models/")
os.system("python3 setup.py develop --no_cuda_ext --user")
def inference(image, task):
if not os.path.exists('tmp'):
os.system('mkdir tmp')
image.save("tmp/lq_image.png", "PNG")
if task == 'Denoising':
os.system("python basicsr/demo.py -opt options/test/SIDD/NAFNet-width64.yml --input_path ./tmp/lq_image.png --output_path ./tmp/image.png")
if task == 'Deblurring':
os.system("python basicsr/demo.py -opt options/test/REDS/NAFNet-width64.yml --input_path ./tmp/lq_image.png --output_path ./tmp/image.png")
return 'tmp/image.png'
title = "DCGAN"
description = "DCGAN 的 Gradio 演示:用于图像恢复的非线性无激活网络。DCGAN 在三个任务上实现了最先进的性能:图像去噪。在这里,提供了一个图像去噪的演示。要使用它,只需上传您的图像,或单击其中一个示例以加载它们。由于此演示使用 CPU,因此推理需要一些时间。"
#article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.04676' target='_blank'>Simple Baselines for Image Restoration</a> | <a href='https://arxiv.org/abs/2204.08714' target='_blank'>NAFSSR: Stereo Image Super-Resolution Using NAFNet</a> | <a href='https://github.com/megvii-research/NAFNet' target='_blank'> Github Repo</a></p>"
examples = [['demo/noisy.png', 'Denoising'],
['demo/blurry.jpg', 'Deblurring']]
iface = gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input"),
gr.inputs.Radio(["Denoising", "Deblurring"], default="Denoising", label='task'),],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
# article=article,
enable_queue=True,
examples=examples
)
iface.launch(debug=True,enable_queue=True)