Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,272 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model_id = "xingyu1996/tiger-gpt2"
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# 只保留新生成的部分
|
36 |
-
new_tokens = output_ids[0, input_ids.shape[1]:]
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
demo = gr.ChatInterface(
|
45 |
respond,
|
46 |
additional_inputs=[
|
47 |
-
gr.Slider(minimum=1, maximum=
|
48 |
-
gr.Slider(minimum=0.1, maximum=
|
49 |
-
gr.Slider(
|
50 |
-
minimum=0.1,
|
51 |
-
maximum=1.0,
|
52 |
-
value=0.95,
|
53 |
-
step=0.05,
|
54 |
-
label="Top-p (nucleus sampling)",
|
55 |
-
),
|
56 |
],
|
57 |
-
title=f"
|
58 |
-
description="
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
import os
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
|
9 |
+
# ================ 第一步:重新定义模型结构 (必须与训练时完全一致) ================
|
10 |
+
# 注意:这些类定义必须与你原始训练脚本中的完全相同
|
11 |
+
|
12 |
+
class GELU(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
def forward(self, x):
|
16 |
+
return 0.5 * x * (1 + torch.tanh(
|
17 |
+
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
18 |
+
(x + 0.044715 * torch.pow(x, 3))
|
19 |
+
))
|
20 |
+
|
21 |
+
class FeedForward(nn.Module):
|
22 |
+
def __init__(self, cfg):
|
23 |
+
super().__init__()
|
24 |
+
self.layers = nn.Sequential(
|
25 |
+
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
26 |
+
GELU(),
|
27 |
+
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
28 |
+
)
|
29 |
+
def forward(self, x):
|
30 |
+
return self.layers(x)
|
31 |
+
|
32 |
+
class MultiHeadAttention(nn.Module):
|
33 |
+
def __init__(self, d_in, d_out,
|
34 |
+
context_length, dropout, num_heads, qkv_bias=False):
|
35 |
+
super().__init__()
|
36 |
+
assert (d_out % num_heads == 0), \
|
37 |
+
"d_out must be divisible by num_heads"
|
38 |
+
|
39 |
+
self.d_out = d_out
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.head_dim = d_out // num_heads
|
42 |
+
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
43 |
+
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
44 |
+
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
45 |
+
self.out_proj = nn.Linear(d_out, d_out)
|
46 |
+
self.dropout_p = dropout
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
b, num_tokens, d_in = x.shape
|
50 |
+
keys = self.W_key(x)
|
51 |
+
queries = self.W_query(x)
|
52 |
+
values = self.W_value(x)
|
53 |
+
|
54 |
+
# Transpose into [B, num_heads, num_tokens, head_dim] for SDPA
|
55 |
+
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
56 |
+
values = values.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
57 |
+
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
|
58 |
+
|
59 |
+
# Use F.scaled_dot_product_attention
|
60 |
+
context_vec = F.scaled_dot_product_attention(
|
61 |
+
queries, keys, values,
|
62 |
+
attn_mask=None,
|
63 |
+
dropout_p=self.dropout_p if self.training else 0.0,
|
64 |
+
is_causal=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# Transpose back to [B, num_tokens, num_heads * head_dim] = [B, T, d_out]
|
68 |
+
context_vec = context_vec.transpose(1, 2).contiguous().view(b, num_tokens, self.d_out)
|
69 |
+
# Apply output projection
|
70 |
+
context_vec = self.out_proj(context_vec)
|
71 |
+
|
72 |
+
return context_vec
|
73 |
+
|
74 |
+
class LayerNorm(nn.Module):
|
75 |
+
def __init__(self, emb_dim):
|
76 |
+
super().__init__()
|
77 |
+
self.eps = 1e-5
|
78 |
+
self.scale = nn.Parameter(torch.ones(emb_dim))
|
79 |
+
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
mean = x.mean(dim=-1, keepdim=True)
|
83 |
+
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
84 |
+
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
85 |
+
return self.scale * norm_x + self.shift
|
86 |
+
|
87 |
+
class TransformerBlock(nn.Module):
|
88 |
+
def __init__(self, cfg):
|
89 |
+
super().__init__()
|
90 |
+
self.att = MultiHeadAttention(
|
91 |
+
d_in=cfg["emb_dim"],
|
92 |
+
d_out=cfg["emb_dim"],
|
93 |
+
context_length=cfg["context_length"],
|
94 |
+
num_heads=cfg["n_heads"],
|
95 |
+
dropout=cfg["drop_rate"],
|
96 |
+
qkv_bias=cfg["qkv_bias"])
|
97 |
+
self.ff = FeedForward(cfg)
|
98 |
+
self.norm1 = LayerNorm(cfg["emb_dim"])
|
99 |
+
self.norm2 = LayerNorm(cfg["emb_dim"])
|
100 |
+
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
shortcut = x
|
104 |
+
x = self.norm1(x)
|
105 |
+
x = self.att(x)
|
106 |
+
x = self.drop_shortcut(x)
|
107 |
+
x = x + shortcut
|
108 |
+
shortcut = x
|
109 |
+
x = self.norm2(x)
|
110 |
+
x = self.ff(x)
|
111 |
+
x = self.drop_shortcut(x)
|
112 |
+
x = x + shortcut
|
113 |
+
return x
|
114 |
+
|
115 |
+
class GPTModel(nn.Module):
|
116 |
+
def __init__(self, cfg):
|
117 |
+
super().__init__()
|
118 |
+
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
119 |
+
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
120 |
+
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
121 |
+
|
122 |
+
self.trf_blocks = nn.Sequential(
|
123 |
+
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
124 |
+
|
125 |
+
self.final_norm = LayerNorm(cfg["emb_dim"])
|
126 |
+
self.out_head = nn.Linear(
|
127 |
+
cfg["emb_dim"], cfg["vocab_size"], bias=False
|
128 |
+
)
|
129 |
+
def forward(self, in_idx):
|
130 |
+
batch_size, seq_len = in_idx.shape
|
131 |
+
tok_embeds = self.tok_emb(in_idx)
|
132 |
+
pos_embeds = self.pos_emb(
|
133 |
+
torch.arange(seq_len, device=in_idx.device)
|
134 |
+
)
|
135 |
+
x = tok_embeds + pos_embeds
|
136 |
+
x = self.drop_emb(x)
|
137 |
+
x = self.trf_blocks(x)
|
138 |
+
x = self.final_norm(x)
|
139 |
+
logits = self.out_head(x)
|
140 |
+
return logits
|
141 |
+
|
142 |
+
# 用于生成的函数
|
143 |
+
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
144 |
+
device = idx.device
|
145 |
+
current_device_type = str(device).split(':')[0]
|
146 |
+
|
147 |
+
for _ in range(max_new_tokens):
|
148 |
+
idx_cond = idx[:, -context_size:]
|
149 |
+
with torch.no_grad():
|
150 |
+
# 推理时不需要混合精度
|
151 |
+
logits = model(idx_cond)
|
152 |
+
logits = logits[:, -1, :]
|
153 |
+
probas = torch.softmax(logits, dim=-1)
|
154 |
+
idx_next = torch.argmax(probas, dim=-1, keepdim=True)
|
155 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
156 |
+
return idx
|
157 |
+
|
158 |
+
def text_to_token_ids(text, tokenizer):
|
159 |
+
encoded = tokenizer.encode(text)
|
160 |
+
encoded_tensor = torch.tensor(encoded).unsqueeze(0)
|
161 |
+
return encoded_tensor
|
162 |
+
|
163 |
+
def token_ids_to_text(token_ids, tokenizer):
|
164 |
+
flat = token_ids.squeeze(0)
|
165 |
+
return tokenizer.decode(flat.tolist(), skip_special_tokens=True)
|
166 |
+
|
167 |
+
# ================ 第二步:设置模型加载和推理 ================
|
168 |
+
|
169 |
+
# 模型 ID
|
170 |
model_id = "xingyu1996/tiger-gpt2"
|
171 |
+
|
172 |
+
# 从 Hugging Face Hub 下载模型权重文件
|
173 |
+
def load_model_from_hub():
|
174 |
+
print("开始从 Hugging Face Hub 下载模型权重...")
|
175 |
+
|
176 |
+
# 下载 pytorch_model.bin 文件
|
177 |
+
model_file = hf_hub_download(model_id, "pytorch_model.bin")
|
178 |
+
print(f"模型权重文件下载完成:{model_file}")
|
179 |
+
|
180 |
+
# 下载 config.json 文件
|
181 |
+
config_file = hf_hub_download(model_id, "config.json")
|
182 |
+
print(f"配置文件下载完成:{config_file}")
|
183 |
+
|
184 |
+
# 加载权重
|
185 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
186 |
+
|
187 |
+
# 加载配置
|
188 |
+
import json
|
189 |
+
with open(config_file, 'r') as f:
|
190 |
+
config = json.load(f)
|
191 |
+
|
192 |
+
# 将 Hugging Face 格式的配置转换为我们的格式
|
193 |
+
# 注意:这里的映射需要根据实际情况调整
|
194 |
+
my_config = {
|
195 |
+
"vocab_size": config.get("vocab_size", 50257),
|
196 |
+
"context_length": config.get("n_positions", 512),
|
197 |
+
"emb_dim": config.get("n_embd", 768),
|
198 |
+
"n_heads": config.get("n_head", 12),
|
199 |
+
"n_layers": config.get("n_layer", 12),
|
200 |
+
"drop_rate": config.get("resid_pdrop", 0.1),
|
201 |
+
"qkv_bias": config.get("qkv_bias", False),
|
202 |
}
|
203 |
|
204 |
+
# 创建模型
|
205 |
+
model = GPTModel(my_config)
|
206 |
+
|
207 |
+
# 加载权重到模型
|
208 |
+
# 检查状态字典中是否有 _orig_mod. 前缀
|
209 |
+
if any(k.startswith('_orig_mod.') for k in state_dict.keys()):
|
210 |
+
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
|
211 |
+
print("已去除权重中的 _orig_mod. 前缀")
|
|
|
|
|
|
|
212 |
|
213 |
+
# 加载权重
|
214 |
+
try:
|
215 |
+
model.load_state_dict(state_dict)
|
216 |
+
print("模型权重加载成功!")
|
217 |
+
except Exception as e:
|
218 |
+
print(f"模型权重加载失败: {e}")
|
219 |
+
# 尝试加载部分权重
|
220 |
+
model.load_state_dict(state_dict, strict=False)
|
221 |
+
print("模型已使用非严格模式加载权重,可能有部分参数没有加载。")
|
222 |
+
|
223 |
+
model.eval() # 设置为评估模式
|
224 |
+
return model, my_config
|
225 |
+
|
226 |
+
# 加载模型和分词器
|
227 |
+
print("正在初始化...")
|
228 |
+
model, config = load_model_from_hub()
|
229 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
230 |
+
print("模型和分词器加载完成!")
|
231 |
|
232 |
+
# ================ 第三步:设置 Gradio 接口 ================
|
233 |
+
|
234 |
+
def respond(message, history, max_tokens, temperature):
|
235 |
+
input_ids = text_to_token_ids(message, tokenizer).to("cpu") # Hugging Face Space 可能没有 GPU
|
236 |
+
context_size = config["context_length"]
|
237 |
+
|
238 |
+
try:
|
239 |
+
# 生成文本
|
240 |
+
output_ids = generate_text_simple(
|
241 |
+
model=model,
|
242 |
+
idx=input_ids,
|
243 |
+
max_new_tokens=max_tokens,
|
244 |
+
context_size=context_size
|
245 |
+
)
|
246 |
+
|
247 |
+
# 解码生成的文本
|
248 |
+
full_text = token_ids_to_text(output_ids, tokenizer)
|
249 |
+
|
250 |
+
# 分离提示和生成部分
|
251 |
+
if message in full_text:
|
252 |
+
generated = full_text[len(message):]
|
253 |
+
else:
|
254 |
+
generated = full_text
|
255 |
+
|
256 |
+
return generated
|
257 |
+
except Exception as e:
|
258 |
+
print(f"生成过程中出错: {type(e).__name__} - {e}")
|
259 |
+
return f"抱歉,生成文本时出错: {type(e).__name__}"
|
260 |
|
261 |
+
# 创建 Gradio 界面
|
262 |
demo = gr.ChatInterface(
|
263 |
respond,
|
264 |
additional_inputs=[
|
265 |
+
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="生成长度"),
|
266 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="温度"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
],
|
268 |
+
title=f"Tiger-GPT2 推理测试",
|
269 |
+
description="输入中文文本,模型将生成后续内容。此演示直接加载了原始模型权重,与本地推理行为一致。",
|
270 |
)
|
271 |
|
272 |
if __name__ == "__main__":
|