Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
from huggingface_hub import hf_hub_download | |
from transformers import AutoTokenizer | |
import torch.nn as nn | |
import torch.nn.functional as F | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# ================ 第一步:定义模型结构 ================ | |
class GELU(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return 0.5 * x * (1 + torch.tanh( | |
torch.sqrt(torch.tensor(2.0 / torch.pi)) * | |
(x + 0.044715 * torch.pow(x, 3)) | |
)) | |
class FeedForward(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.layers = nn.Sequential( | |
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | |
GELU(), | |
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_in, d_out, | |
context_length, dropout, num_heads, qkv_bias=False): | |
super().__init__() | |
assert (d_out % num_heads == 0), \ | |
"d_out must be divisible by num_heads" | |
self.d_out = d_out | |
self.num_heads = num_heads | |
self.head_dim = d_out // num_heads | |
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | |
self.out_proj = nn.Linear(d_out, d_out) | |
self.dropout_p = dropout | |
def forward(self, x): | |
b, num_tokens, d_in = x.shape | |
keys = self.W_key(x) | |
queries = self.W_query(x) | |
values = self.W_value(x) | |
# Transpose into [B, num_heads, num_tokens, head_dim] for SDPA | |
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
values = values.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
# Use F.scaled_dot_product_attention | |
context_vec = F.scaled_dot_product_attention( | |
queries, keys, values, | |
attn_mask=None, | |
dropout_p=self.dropout_p if self.training else 0.0, | |
is_causal=True | |
) | |
# Transpose back to [B, num_tokens, num_heads * head_dim] = [B, T, d_out] | |
context_vec = context_vec.transpose(1, 2).contiguous().view(b, num_tokens, self.d_out) | |
# Apply output projection | |
context_vec = self.out_proj(context_vec) | |
return context_vec | |
class LayerNorm(nn.Module): | |
def __init__(self, emb_dim): | |
super().__init__() | |
self.eps = 1e-5 | |
self.scale = nn.Parameter(torch.ones(emb_dim)) | |
self.shift = nn.Parameter(torch.zeros(emb_dim)) | |
def forward(self, x): | |
mean = x.mean(dim=-1, keepdim=True) | |
var = x.var(dim=-1, keepdim=True, unbiased=False) | |
norm_x = (x - mean) / torch.sqrt(var + self.eps) | |
return self.scale * norm_x + self.shift | |
class TransformerBlock(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.att = MultiHeadAttention( | |
d_in=cfg["emb_dim"], | |
d_out=cfg["emb_dim"], | |
context_length=cfg["context_length"], | |
num_heads=cfg["n_heads"], | |
dropout=cfg["drop_rate"], | |
qkv_bias=cfg["qkv_bias"]) | |
self.ff = FeedForward(cfg) | |
self.norm1 = LayerNorm(cfg["emb_dim"]) | |
self.norm2 = LayerNorm(cfg["emb_dim"]) | |
self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | |
def forward(self, x): | |
shortcut = x | |
x = self.norm1(x) | |
x = self.att(x) | |
x = self.drop_shortcut(x) | |
x = x + shortcut | |
shortcut = x | |
x = self.norm2(x) | |
x = self.ff(x) | |
x = self.drop_shortcut(x) | |
x = x + shortcut | |
return x | |
class GPTModel(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | |
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | |
self.drop_emb = nn.Dropout(cfg["drop_rate"]) | |
self.trf_blocks = nn.Sequential( | |
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | |
self.final_norm = LayerNorm(cfg["emb_dim"]) | |
self.out_head = nn.Linear( | |
cfg["emb_dim"], cfg["vocab_size"], bias=False | |
) | |
def forward(self, in_idx): | |
batch_size, seq_len = in_idx.shape | |
tok_embeds = self.tok_emb(in_idx) | |
pos_embeds = self.pos_emb( | |
torch.arange(seq_len, device=in_idx.device) | |
) | |
x = tok_embeds + pos_embeds | |
x = self.drop_emb(x) | |
x = self.trf_blocks(x) | |
x = self.final_norm(x) | |
logits = self.out_head(x) | |
return logits | |
# ================ 第二步:定义文本生成函数 ================ | |
def generate_text_simple(model, idx, max_new_tokens, context_size, temperature=1.0, top_k=None): | |
""" | |
使用 top_k 采样和温度缩放的文本生成函数 | |
参数: | |
model: 语言模型 | |
idx: 输入序列的 token ID | |
max_new_tokens: 要生成的最大新 token 数量 | |
context_size: 上下文窗口大小 | |
temperature: 温度参数,控制采样的随机性(越高越随机) | |
top_k: 只考虑概率最高的 top_k 个 token,如果为 None 或 0 则考虑所有 token | |
返回: | |
扩展后的 token ID 序列 | |
""" | |
device = idx.device | |
for _ in range(max_new_tokens): | |
# 获取当前上下文 | |
idx_cond = idx[:, -context_size:] | |
with torch.no_grad(): | |
# 获取模型预测的下一个 token 的 logits | |
logits = model(idx_cond) | |
# 只关心最后一个位置的预测 | |
logits = logits[:, -1, :] | |
# 应用温度缩放 | |
if temperature > 0: | |
logits = logits / temperature | |
# 应用 top_k 过滤 | |
if top_k is not None and top_k > 0: | |
# 获取前 k 个最大值 | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
# 设置阈值为第 k 个最大值 | |
threshold = v[..., [-1]] | |
# 将阈值以下的值设为 -inf | |
logits = torch.where(logits < threshold, | |
torch.full_like(logits, float('-inf')), | |
logits) | |
# 应用 softmax 转换为概率 | |
probs = torch.softmax(logits, dim=-1) | |
# 根据概率分布采样 | |
if temperature > 0: | |
# 随机采样 | |
idx_next = torch.multinomial(probs, num_samples=1) | |
else: | |
# 如果温度为 0,则取最大概率的 token(等同于 argmax) | |
idx_next = torch.argmax(probs, dim=-1, keepdim=True) | |
# 将新生成的 token 添加到序列中 | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
def text_to_token_ids(text, tokenizer): | |
encoded = tokenizer.encode(text) | |
encoded_tensor = torch.tensor(encoded).unsqueeze(0) | |
return encoded_tensor | |
def token_ids_to_text(token_ids, tokenizer): | |
flat = token_ids.squeeze(0) | |
return tokenizer.decode(flat.tolist(), skip_special_tokens=True) | |
# ================ 第三步:设置模型加载和推理 ================ | |
# 模型 ID | |
model_id = "xingyu1996/tiger-gpt2" | |
# 从 Hugging Face Hub 下载模型权重文件 | |
def load_model_from_hub(): | |
print("开始从 Hugging Face Hub 下载模型权重...") | |
# 下载 pytorch_model.bin 文件 | |
model_file = hf_hub_download(model_id, "pytorch_model.bin") | |
print(f"模型权重文件下载完成:{model_file}") | |
# 下载 config.json 文件 | |
config_file = hf_hub_download(model_id, "config.json") | |
print(f"配置文件下载完成:{config_file}") | |
# 加载权重 | |
state_dict = torch.load(model_file, map_location="cpu") | |
# 加载配置 | |
import json | |
with open(config_file, 'r') as f: | |
config = json.load(f) | |
# 将 Hugging Face 格式的配置转换为我们的格式 | |
my_config = { | |
"vocab_size": config.get("vocab_size", 50257), | |
"context_length": config.get("n_positions", 512), | |
"emb_dim": config.get("n_embd", 768), | |
"n_heads": config.get("n_head", 12), | |
"n_layers": config.get("n_layer", 12), | |
"drop_rate": config.get("resid_pdrop", 0.1), | |
"qkv_bias": config.get("qkv_bias", False), | |
} | |
# 创建模型 | |
model = GPTModel(my_config) | |
# 检查状态字典中是否有 _orig_mod. 前缀 | |
if any(k.startswith('_orig_mod.') for k in state_dict.keys()): | |
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()} | |
print("已去除权重中的 _orig_mod. 前缀") | |
# 加载权重 | |
try: | |
model.load_state_dict(state_dict) | |
print("模型权重加载成功!") | |
except Exception as e: | |
print(f"模型权重加载失败: {e}") | |
# 尝试加载部分权重 | |
model.load_state_dict(state_dict, strict=False) | |
print("模型已使用非严格模式加载权重,可能有部分参数没有加载。") | |
model.eval() # 设置为评估模式 | |
return model, my_config | |
# 加载模型和分词器 | |
print("正在初始化...") | |
model, config = load_model_from_hub() | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
print("模型和分词器加载完成!") | |
# ================ 第四步:设置 Gradio 接口 ================ | |
def respond(message, history, max_tokens, temperature, top_k): | |
input_ids = text_to_token_ids(message, tokenizer).to("cpu") # Hugging Face Space 可能没有 GPU | |
context_size = config["context_length"] | |
try: | |
# 生成文本 | |
output_ids = generate_text_simple( | |
model=model, | |
idx=input_ids, | |
max_new_tokens=max_tokens, | |
context_size=context_size, | |
temperature=temperature, | |
top_k=top_k | |
) | |
# 解码生成的文本 | |
full_text = token_ids_to_text(output_ids, tokenizer) | |
# 分离提示和生成部分 | |
if message in full_text: | |
generated = full_text[len(message):] | |
else: | |
generated = full_text | |
return generated | |
except Exception as e: | |
print(f"生成过程中出错: {type(e).__name__} - {e}") | |
return f"抱歉,生成文本时出错: {type(e).__name__}" | |
# 创建 Gradio 界面 | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="生成长度"), | |
gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="温度 (0.0 表示无随机性)"), | |
gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K (0 表示不限制)"), | |
], | |
title=f"Tiger-GPT2 推理测试", | |
description="""输入中文文本,模型将生成后续内容。此演示直接加载了原始模型权重,与本地推理行为一致。 | |
**参数说明**: | |
- **生成长度**: 要生成的最大token数量 | |
- **温度**: 控制生成随机性,值越高越随机,值为0时始终选择最可能的词 | |
- **Top-K**: 只从概率最高的K个词中选择下一个词,设为0则考虑所有词 | |
""", | |
) | |
if __name__ == "__main__": | |
demo.launch() |