tiger-gpt2-chat / app.py
xingyu1996's picture
Update app.py
feaac73 verified
import gradio as gr
import torch
import os
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer
import torch.nn as nn
import torch.nn.functional as F
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# ================ 第一步:定义模型结构 ================
class GELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)
def forward(self, x):
return self.layers(x)
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out,
context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
assert (d_out % num_heads == 0), \
"d_out must be divisible by num_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out)
self.dropout_p = dropout
def forward(self, x):
b, num_tokens, d_in = x.shape
keys = self.W_key(x)
queries = self.W_query(x)
values = self.W_value(x)
# Transpose into [B, num_heads, num_tokens, head_dim] for SDPA
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
# Use F.scaled_dot_product_attention
context_vec = F.scaled_dot_product_attention(
queries, keys, values,
attn_mask=None,
dropout_p=self.dropout_p if self.training else 0.0,
is_causal=True
)
# Transpose back to [B, num_tokens, num_heads * head_dim] = [B, T, d_out]
context_vec = context_vec.transpose(1, 2).contiguous().view(b, num_tokens, self.d_out)
# Apply output projection
context_vec = self.out_proj(context_vec)
return context_vec
class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
context_length=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
def forward(self, x):
shortcut = x
x = self.norm1(x)
x = self.att(x)
x = self.drop_shortcut(x)
x = x + shortcut
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_shortcut(x)
x = x + shortcut
return x
class GPTModel(nn.Module):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(
cfg["emb_dim"], cfg["vocab_size"], bias=False
)
def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(
torch.arange(seq_len, device=in_idx.device)
)
x = tok_embeds + pos_embeds
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
logits = self.out_head(x)
return logits
# ================ 第二步:定义文本生成函数 ================
def generate_text_simple(model, idx, max_new_tokens, context_size, temperature=1.0, top_k=None):
"""
使用 top_k 采样和温度缩放的文本生成函数
参数:
model: 语言模型
idx: 输入序列的 token ID
max_new_tokens: 要生成的最大新 token 数量
context_size: 上下文窗口大小
temperature: 温度参数,控制采样的随机性(越高越随机)
top_k: 只考虑概率最高的 top_k 个 token,如果为 None 或 0 则考虑所有 token
返回:
扩展后的 token ID 序列
"""
device = idx.device
for _ in range(max_new_tokens):
# 获取当前上下文
idx_cond = idx[:, -context_size:]
with torch.no_grad():
# 获取模型预测的下一个 token 的 logits
logits = model(idx_cond)
# 只关心最后一个位置的预测
logits = logits[:, -1, :]
# 应用温度缩放
if temperature > 0:
logits = logits / temperature
# 应用 top_k 过滤
if top_k is not None and top_k > 0:
# 获取前 k 个最大值
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
# 设置阈值为第 k 个最大值
threshold = v[..., [-1]]
# 将阈值以下的值设为 -inf
logits = torch.where(logits < threshold,
torch.full_like(logits, float('-inf')),
logits)
# 应用 softmax 转换为概率
probs = torch.softmax(logits, dim=-1)
# 根据概率分布采样
if temperature > 0:
# 随机采样
idx_next = torch.multinomial(probs, num_samples=1)
else:
# 如果温度为 0,则取最大概率的 token(等同于 argmax)
idx_next = torch.argmax(probs, dim=-1, keepdim=True)
# 将新生成的 token 添加到序列中
idx = torch.cat((idx, idx_next), dim=1)
return idx
def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text)
encoded_tensor = torch.tensor(encoded).unsqueeze(0)
return encoded_tensor
def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0)
return tokenizer.decode(flat.tolist(), skip_special_tokens=True)
# ================ 第三步:设置模型加载和推理 ================
# 模型 ID
model_id = "xingyu1996/tiger-gpt2"
# 从 Hugging Face Hub 下载模型权重文件
def load_model_from_hub():
print("开始从 Hugging Face Hub 下载模型权重...")
# 下载 pytorch_model.bin 文件
model_file = hf_hub_download(model_id, "pytorch_model.bin")
print(f"模型权重文件下载完成:{model_file}")
# 下载 config.json 文件
config_file = hf_hub_download(model_id, "config.json")
print(f"配置文件下载完成:{config_file}")
# 加载权重
state_dict = torch.load(model_file, map_location="cpu")
# 加载配置
import json
with open(config_file, 'r') as f:
config = json.load(f)
# 将 Hugging Face 格式的配置转换为我们的格式
my_config = {
"vocab_size": config.get("vocab_size", 50257),
"context_length": config.get("n_positions", 512),
"emb_dim": config.get("n_embd", 768),
"n_heads": config.get("n_head", 12),
"n_layers": config.get("n_layer", 12),
"drop_rate": config.get("resid_pdrop", 0.1),
"qkv_bias": config.get("qkv_bias", False),
}
# 创建模型
model = GPTModel(my_config)
# 检查状态字典中是否有 _orig_mod. 前缀
if any(k.startswith('_orig_mod.') for k in state_dict.keys()):
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
print("已去除权重中的 _orig_mod. 前缀")
# 加载权重
try:
model.load_state_dict(state_dict)
print("模型权重加载成功!")
except Exception as e:
print(f"模型权重加载失败: {e}")
# 尝试加载部分权重
model.load_state_dict(state_dict, strict=False)
print("模型已使用非严格模式加载权重,可能有部分参数没有加载。")
model.eval() # 设置为评估模式
return model, my_config
# 加载模型和分词器
print("正在初始化...")
model, config = load_model_from_hub()
tokenizer = AutoTokenizer.from_pretrained("gpt2")
print("模型和分词器加载完成!")
# ================ 第四步:设置 Gradio 接口 ================
def respond(message, history, max_tokens, temperature, top_k):
input_ids = text_to_token_ids(message, tokenizer).to("cpu") # Hugging Face Space 可能没有 GPU
context_size = config["context_length"]
try:
# 生成文本
output_ids = generate_text_simple(
model=model,
idx=input_ids,
max_new_tokens=max_tokens,
context_size=context_size,
temperature=temperature,
top_k=top_k
)
# 解码生成的文本
full_text = token_ids_to_text(output_ids, tokenizer)
# 分离提示和生成部分
if message in full_text:
generated = full_text[len(message):]
else:
generated = full_text
return generated
except Exception as e:
print(f"生成过程中出错: {type(e).__name__} - {e}")
return f"抱歉,生成文本时出错: {type(e).__name__}"
# 创建 Gradio 界面
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="生成长度"),
gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="温度 (0.0 表示无随机性)"),
gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K (0 表示不限制)"),
],
title=f"Tiger-GPT2 推理测试",
description="""输入中文文本,模型将生成后续内容。此演示直接加载了原始模型权重,与本地推理行为一致。
**参数说明**:
- **生成长度**: 要生成的最大token数量
- **温度**: 控制生成随机性,值越高越随机,值为0时始终选择最可能的词
- **Top-K**: 只从概率最高的K个词中选择下一个词,设为0则考虑所有词
""",
)
if __name__ == "__main__":
demo.launch()