from typing import * import torch import torch.nn as nn import torch.nn.functional as F from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 from ...modules.transformer import AbsolutePositionEmbedder from ...modules import sparse as sp from ...modules.sparse.transformer.modulated import ModulatedSparseTransformerCrossBlock from .dense_dit import TimestepEmbedder class SparseDiT(nn.Module): def __init__( self, resolution: int, in_channels: int, model_channels: int, cond_channels: int, out_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, num_kv_heads: Optional[int] = 2, compression_block_size: int = 4, selection_block_size: int = 8, topk: int = 8, compression_version: str = 'v2', mlp_ratio: float = 4, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, share_mod: bool = False, qk_rms_norm: bool = False, qk_rms_norm_cross: bool = False, sparse_conditions: bool = False, factor: float = 1.0, window_size: Optional[int] = 8, use_shift: bool = True, ): super().__init__() self.resolution = resolution self.in_channels = in_channels self.model_channels = model_channels self.cond_channels = cond_channels self.out_channels = out_channels self.num_blocks = num_blocks self.num_heads = num_heads or model_channels // num_head_channels self.mlp_ratio = mlp_ratio self.pe_mode = pe_mode self.use_fp16 = use_fp16 self.use_checkpoint = use_checkpoint self.share_mod = share_mod self.qk_rms_norm = qk_rms_norm self.qk_rms_norm_cross = qk_rms_norm_cross self.dtype = torch.float16 if use_fp16 else torch.float32 self.sparse_conditions = sparse_conditions self.factor = factor self.compression_block_size = compression_block_size self.selection_block_size = selection_block_size self.t_embedder = TimestepEmbedder(model_channels) if share_mod: self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(model_channels, 6 * model_channels, bias=True) ) if sparse_conditions: self.cond_proj = sp.SparseLinear(cond_channels, cond_channels) self.pos_embedder_cond = AbsolutePositionEmbedder(model_channels, in_channels=3) if pe_mode == "ape": self.pos_embedder = AbsolutePositionEmbedder(model_channels) self.input_layer = sp.SparseLinear(in_channels, model_channels) self.blocks = nn.ModuleList([ ModulatedSparseTransformerCrossBlock( model_channels, cond_channels, num_heads=self.num_heads, num_kv_heads=num_kv_heads, compression_block_size=compression_block_size, selection_block_size=selection_block_size, topk=topk, mlp_ratio=self.mlp_ratio, attn_mode='full', compression_version=compression_version, use_checkpoint=self.use_checkpoint, use_rope=(pe_mode == "rope"), share_mod=self.share_mod, qk_rms_norm=self.qk_rms_norm, qk_rms_norm_cross=self.qk_rms_norm_cross, resolution=resolution, window_size=window_size, shift_window=window_size // 2 * (_ % 2) if use_shift else window_size // 2, ) for _ in range(num_blocks) ]) self.out_layer = sp.SparseLinear(model_channels, out_channels) self.initialize_weights() if use_fp16: self.convert_to_fp16() @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the torso of the model to float16. """ # self.blocks.apply(convert_module_to_f16) self.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the torso of the model to float32. """ self.blocks.apply(convert_module_to_f32) def initialize_weights(self) -> None: # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: if self.share_mod: nn.init.constant_(self.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.adaLN_modulation[-1].bias, 0) else: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: Union[torch.Tensor, sp.SparseTensor]) -> sp.SparseTensor: h = self.input_layer(x).type(self.dtype) t_emb = self.t_embedder(t) if self.share_mod: t_emb = self.adaLN_modulation(t_emb) t_emb = t_emb.type(self.dtype) cond = cond.type(self.dtype) if self.sparse_conditions: cond = self.cond_proj(cond) cond = cond + self.pos_embedder_cond(cond.coords[:, 1:]).type(self.dtype) if self.pe_mode == "ape": h = h + self.pos_embedder(h.coords[:, 1:], factor=self.factor).type(self.dtype) for block in self.blocks: h = block(h, t_emb, cond) h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) h = self.out_layer(h.type(x.dtype)) return h