wushuang98's picture
Upload 197 files
bcb05d1 verified
from typing import *
import torch
import torch.nn as nn
from ..basic import SparseTensor
from ..attention import SparseMultiHeadAttention, SerializeMode, SpatialSparseAttention
from ...norm import LayerNorm32
from .blocks import SparseFeedForwardNet
class ModulatedSparseTransformerBlock(nn.Module):
"""
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
"""
def __init__(
self,
channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
window_size: Optional[int] = None,
shift_sequence: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
serialize_mode: Optional[SerializeMode] = None,
use_checkpoint: bool = False,
use_rope: bool = False,
qk_rms_norm: bool = False,
qkv_bias: bool = True,
share_mod: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.share_mod = share_mod
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
self.attn = SparseMultiHeadAttention(
channels,
num_heads=num_heads,
attn_mode=attn_mode,
window_size=window_size,
shift_sequence=shift_sequence,
shift_window=shift_window,
serialize_mode=serialize_mode,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.mlp = SparseFeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
if not share_mod:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(channels, 6 * channels, bias=True)
)
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
if self.share_mod:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
else:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
h = x.replace(self.norm1(x.feats))
h = h * (1 + scale_msa) + shift_msa
h = self.attn(h)
h = h * gate_msa
x = x + h
h = x.replace(self.norm2(x.feats))
h = h * (1 + scale_mlp) + shift_mlp
h = self.mlp(h)
h = h * gate_mlp
x = x + h
return x
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
else:
return self._forward(x, mod)
class ModulatedSparseTransformerCrossBlock(nn.Module):
"""
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
"""
def __init__(
self,
channels: int,
ctx_channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
window_size: Optional[int] = None,
shift_sequence: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
serialize_mode: Optional[SerializeMode] = None,
use_checkpoint: bool = False,
compression_version: str = "v2",
use_rope: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
qkv_bias: bool = True,
share_mod: bool = False,
use_ssa: bool = True,
num_kv_heads: int = 2,
compression_block_size: int = 4,
selection_block_size: int = 8,
topk: int = 8,
resolution: int = 64,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.share_mod = share_mod
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
if use_ssa:
self.self_attn = SpatialSparseAttention(
channels,
num_q_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=channels//num_heads,
compression_block_size=compression_block_size,
compression_version=compression_version,
selection_block_size=selection_block_size,
topk=topk,
window_size=window_size,
shift_window=shift_window,
resolution=resolution,
)
else:
self.self_attn = SparseMultiHeadAttention(
channels,
num_heads=num_heads,
type="self",
attn_mode=attn_mode,
window_size=window_size,
shift_sequence=shift_sequence,
shift_window=shift_window,
serialize_mode=serialize_mode,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.cross_attn = SparseMultiHeadAttention(
channels,
ctx_channels=ctx_channels,
num_heads=num_heads,
type="cross",
attn_mode="full",
qkv_bias=qkv_bias,
qk_rms_norm=qk_rms_norm_cross,
)
self.mlp = SparseFeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
if not share_mod:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(channels, 6 * channels, bias=True)
)
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
if self.share_mod:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
else:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
h = x.replace(self.norm1(x.feats))
feats_h = h.feats
layouts = h.layout
ada_r1 = []
for i in range(len(layouts)):
ada_r1.append(feats_h[layouts[i]] * (1 + scale_msa[i:i+1]) + shift_msa[i:i+1])
h = h.replace(torch.cat(ada_r1, dim=0))
h = self.self_attn(h)
feats_h = h.feats
layouts = h.layout
ada_r2 = []
for i in range(len(layouts)):
ada_r2.append(feats_h[layouts[i]] * gate_msa[i:i+1])
h = h.replace(torch.cat(ada_r2, dim=0))
x = x + h
h = x.replace(self.norm2(x.feats))
h = self.cross_attn(h, context)
x = x + h
h = x.replace(self.norm3(x.feats))
feats_h = h.feats
layouts = h.layout
ada_r3 = []
for i in range(len(layouts)):
ada_r3.append(feats_h[layouts[i]] * (1 + scale_mlp[i:i+1]) + shift_mlp[i:i+1])
h = h.replace(torch.cat(ada_r3, dim=0))
h = self.mlp(h)
feats_h = h.feats
layouts = h.layout
ada_r4 = []
for i in range(len(layouts)):
ada_r4.append(feats_h[layouts[i]] * gate_mlp[i:i+1])
h = h.replace(torch.cat(ada_r4, dim=0))
x = x + h
return x
def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
else:
return self._forward(x, mod, context)