Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import trimesh | |
from skimage import measure | |
from ...modules.norm import GroupNorm32, ChannelLayerNorm32 | |
from ...modules.spatial import pixel_shuffle_3d | |
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
from .distributions import DiagonalGaussianDistribution | |
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module: | |
""" | |
Return a normalization layer. | |
""" | |
if norm_type == "group": | |
return GroupNorm32(32, *args, **kwargs) | |
elif norm_type == "layer": | |
return ChannelLayerNorm32(*args, **kwargs) | |
else: | |
raise ValueError(f"Invalid norm type {norm_type}") | |
class ResBlock3d(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
out_channels: Optional[int] = None, | |
norm_type: Literal["group", "layer"] = "layer", | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.norm1 = norm_layer(norm_type, channels) | |
self.norm2 = norm_layer(norm_type, self.out_channels) | |
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1) | |
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)) | |
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.norm1(x) | |
h = F.silu(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = F.silu(h) | |
h = self.conv2(h) | |
h = h + self.skip_connection(x) | |
return h | |
class DownsampleBlock3d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
mode: Literal["conv", "avgpool"] = "conv", | |
): | |
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}" | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if mode == "conv": | |
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2) | |
elif mode == "avgpool": | |
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if hasattr(self, "conv"): | |
return self.conv(x) | |
else: | |
return F.avg_pool3d(x, 2) | |
class UpsampleBlock3d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
mode: Literal["conv", "nearest"] = "conv", | |
): | |
assert mode in ["conv", "nearest"], f"Invalid mode {mode}" | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if mode == "conv": | |
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1) | |
elif mode == "nearest": | |
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if hasattr(self, "conv"): | |
x = self.conv(x) | |
return pixel_shuffle_3d(x, 2) | |
else: | |
return F.interpolate(x, scale_factor=2, mode="nearest") | |
class SparseStructureEncoder(nn.Module): | |
""" | |
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3). | |
Args: | |
in_channels (int): Channels of the input. | |
latent_channels (int): Channels of the latent representation. | |
num_res_blocks (int): Number of residual blocks at each resolution. | |
channels (List[int]): Channels of the encoder blocks. | |
num_res_blocks_middle (int): Number of residual blocks in the middle. | |
norm_type (Literal["group", "layer"]): Type of normalization layer. | |
use_fp16 (bool): Whether to use FP16. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
latent_channels: int, | |
num_res_blocks: int, | |
channels: List[int], | |
num_res_blocks_middle: int = 2, | |
norm_type: Literal["group", "layer"] = "layer", | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.latent_channels = latent_channels | |
self.num_res_blocks = num_res_blocks | |
self.channels = channels | |
self.num_res_blocks_middle = num_res_blocks_middle | |
self.norm_type = norm_type | |
self.use_fp16 = use_fp16 | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.use_checkpoint = use_checkpoint | |
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i, ch in enumerate(channels): | |
self.blocks.extend([ | |
ResBlock3d(ch, ch) | |
for _ in range(num_res_blocks) | |
]) | |
if i < len(channels) - 1: | |
self.blocks.append( | |
DownsampleBlock3d(ch, channels[i+1]) | |
) | |
self.middle_block = nn.Sequential(*[ | |
ResBlock3d(channels[-1], channels[-1]) | |
for _ in range(num_res_blocks_middle) | |
]) | |
self.out_layer = nn.Sequential( | |
norm_layer(norm_type, channels[-1]), | |
nn.SiLU(), | |
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1) | |
) | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.use_fp16 = True | |
self.dtype = torch.float16 | |
self.blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.use_fp16 = False | |
self.dtype = torch.float32 | |
self.blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.input_layer(x) | |
for block in self.blocks: | |
h = block(h) | |
h = self.middle_block(h) | |
h = self.out_layer(h) | |
return h | |
class SparseStructureDecoder(nn.Module): | |
""" | |
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3). | |
Args: | |
out_channels (int): Channels of the output. | |
latent_channels (int): Channels of the latent representation. | |
num_res_blocks (int): Number of residual blocks at each resolution. | |
channels (List[int]): Channels of the decoder blocks. | |
num_res_blocks_middle (int): Number of residual blocks in the middle. | |
norm_type (Literal["group", "layer"]): Type of normalization layer. | |
use_fp16 (bool): Whether to use FP16. | |
""" | |
def __init__( | |
self, | |
out_channels: int, | |
latent_channels: int, | |
num_res_blocks: int, | |
channels: List[int], | |
num_res_blocks_middle: int = 2, | |
norm_type: Literal["group", "layer"] = "layer", | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
): | |
super().__init__() | |
self.out_channels = out_channels | |
self.latent_channels = latent_channels | |
self.num_res_blocks = num_res_blocks | |
self.channels = channels | |
self.num_res_blocks_middle = num_res_blocks_middle | |
self.norm_type = norm_type | |
self.use_fp16 = use_fp16 | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.use_checkpoint = use_checkpoint | |
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1) | |
self.middle_block = nn.Sequential(*[ | |
ResBlock3d(channels[0], channels[0]) | |
for _ in range(num_res_blocks_middle) | |
]) | |
self.blocks = nn.ModuleList([]) | |
for i, ch in enumerate(channels): | |
self.blocks.extend([ | |
ResBlock3d(ch, ch) | |
for _ in range(num_res_blocks) | |
]) | |
if i < len(channels) - 1: | |
self.blocks.append( | |
UpsampleBlock3d(ch, channels[i+1]) | |
) | |
self.out_layer = nn.Sequential( | |
norm_layer(norm_type, channels[-1]), | |
nn.SiLU(), | |
nn.Conv3d(channels[-1], out_channels, 3, padding=1) | |
) | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.use_fp16 = True | |
self.dtype = torch.float16 | |
# self.blocks.apply(convert_module_to_f16) | |
# self.middle_block.apply(convert_module_to_f16) | |
self.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.use_fp16 = False | |
self.dtype = torch.float32 | |
self.blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.input_layer(x) | |
h = self.middle_block(h) | |
for block in self.blocks: | |
h = block(h) | |
h = self.out_layer(h) | |
return h | |
class DenseShapeVAE(nn.Module): | |
def __init__(self, | |
embed_dim: int = 0, | |
model_channels_encoder: list = [32, 128, 512], | |
model_channels_decoder: list = [512, 128, 32], | |
num_res_blocks_encoder: int = 2, | |
num_res_blocks_middle_encoder: int = 2, | |
num_res_blocks_decoder: int = 2, | |
num_res_blocks_middle_decoder: int=2, | |
in_channels: int = 1, | |
out_channels: int = 1, | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
latents_scale: float = 1.0, | |
latents_shift: float = 0.0): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.latents_scale = latents_scale | |
self.latents_shift = latents_shift | |
self.encoder = SparseStructureEncoder( | |
in_channels=in_channels, | |
latent_channels=embed_dim, | |
num_res_blocks=num_res_blocks_encoder, | |
channels=model_channels_encoder, | |
num_res_blocks_middle=num_res_blocks_middle_encoder, | |
use_fp16=use_fp16, | |
use_checkpoint=use_checkpoint, | |
) | |
self.decoder = SparseStructureDecoder( | |
num_res_blocks=num_res_blocks_decoder, | |
num_res_blocks_middle=num_res_blocks_middle_decoder, | |
channels=model_channels_decoder, | |
latent_channels=embed_dim, | |
out_channels=out_channels, | |
use_fp16=use_fp16, | |
use_checkpoint=use_checkpoint, | |
) | |
self.embed_dim = embed_dim | |
def encode(self, batch, sample_posterior: bool = True): | |
x = batch['dense_index'] * 2.0 - 1.0 | |
h = self.encoder(x) | |
posterior = DiagonalGaussianDistribution(h, feat_dim=1) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
return z, posterior | |
def forward(self, batch): | |
z, posterior = self.encode(batch) | |
reconst_x = self.decoder(z) | |
outputs = {'reconst_x': reconst_x, 'posterior': posterior} | |
return outputs | |
def decode_mesh(self, | |
latents, | |
voxel_resolution: int = 64, | |
mc_threshold: float = 0.5, | |
return_index: bool = False): | |
x = self.decoder(latents) | |
if return_index: | |
outputs = [] | |
for i in range(len(x)): | |
occ = x[i].sigmoid() | |
occ = (occ >= mc_threshold).float().squeeze(0) | |
index = occ.unsqueeze(0).nonzero() | |
outputs.append(index) | |
else: | |
outputs = self.dense2mesh(x, voxel_resolution=voxel_resolution, mc_threshold=mc_threshold) | |
return outputs | |
def dense2mesh(self, | |
x: torch.FloatTensor, | |
voxel_resolution: int = 64, | |
mc_threshold: float = 0.5): | |
meshes = [] | |
for i in range(len(x)): | |
occ = x[i].sigmoid() | |
occ = (occ >= 0.1).float().squeeze(0).cpu().detach().numpy() | |
vertices, faces, _, _ = measure.marching_cubes( | |
occ, | |
mc_threshold, | |
method="lewiner", | |
) | |
vertices = vertices / voxel_resolution * 2 - 1 | |
meshes.append(trimesh.Trimesh(vertices, faces)) | |
return meshes | |