File size: 4,227 Bytes
bcb05d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...modules import sparse as sp
from .base import SparseTransformerBase


class SparseDownBlock3d(nn.Module):

    def __init__(
        self,
        channels: int,
        out_channels: Optional[int] = None,
        num_groups: int = 32,
        use_checkpoint: bool = False,
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels

        self.act_layers = nn.Sequential(
            sp.SparseGroupNorm32(num_groups, channels),
            sp.SparseSiLU()
        )

        self.down = sp.SparseDownsample(2)
        self.out_layers = nn.Sequential(
            sp.SparseConv3d(channels, self.out_channels, 3, padding=1),
            sp.SparseGroupNorm32(num_groups, self.out_channels),
            sp.SparseSiLU(),
            sp.SparseConv3d(self.out_channels, self.out_channels, 3, padding=1),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        else:
            self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1)

        self.use_checkpoint = use_checkpoint
        
    def _forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
        h = self.act_layers(x)
        h = self.down(h)
        x = self.down(x)
        h = self.out_layers(h)
        h = h + self.skip_connection(x)
        return h

    def forward(self, x: torch.Tensor):
        if self.use_checkpoint:
            return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
        else:
            return self._forward(x)


class SparseSDFEncoder(SparseTransformerBase):
    def __init__(
        self,
        resolution: int,
        in_channels: int,
        model_channels: int,
        latent_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
        window_size: int = 8,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_checkpoint: bool = False,
        qk_rms_norm: bool = False,
    ):
        super().__init__(
            in_channels=in_channels,
            model_channels=model_channels,
            num_blocks=num_blocks,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            mlp_ratio=mlp_ratio,
            attn_mode=attn_mode,
            window_size=window_size,
            pe_mode=pe_mode,
            use_fp16=use_fp16,
            use_checkpoint=use_checkpoint,
            qk_rms_norm=qk_rms_norm,
        )

        self.input_layer1 = sp.SparseLinear(1, model_channels // 16)
        
        self.downsample = nn.ModuleList([
            SparseDownBlock3d(
                channels=model_channels//16,
                out_channels=model_channels // 8,
                use_checkpoint=use_checkpoint,
            ),
            SparseDownBlock3d(
                channels=model_channels // 8,
                out_channels=model_channels // 4,
                use_checkpoint=use_checkpoint,
            ),
            SparseDownBlock3d(
                channels=model_channels // 4,
                out_channels=model_channels,
                use_checkpoint=use_checkpoint,
            )
        ])

        self.resolution = resolution
        self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()

    def initialize_weights(self) -> None:
        super().initialize_weights()
        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def forward(self, x: sp.SparseTensor, factor: float = None):

        x = self.input_layer1(x)
        for block in self.downsample:
            x = block(x)
        h = super().forward(x, factor)
        h = h.type(x.dtype)
        h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
        h = self.out_layer(h)
        
        return h