|
import os |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
import glob |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from torchvision.transforms import v2 |
|
from pytorch_lightning import seed_everything |
|
from omegaconf import OmegaConf |
|
from tqdm import tqdm |
|
|
|
from slrm.utils.train_util import instantiate_from_config |
|
from slrm.utils.camera_util import ( |
|
FOV_to_intrinsics, |
|
get_circular_camera_poses, |
|
) |
|
from slrm.utils.mesh_util import save_obj, save_glb |
|
from slrm.utils.infer_util import images_to_video |
|
|
|
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): |
|
""" |
|
Get the rendering camera parameters. |
|
""" |
|
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) |
|
if is_flexicubes: |
|
cameras = torch.linalg.inv(c2ws) |
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|
else: |
|
extrinsics = c2ws.flatten(-2) |
|
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) |
|
cameras = torch.cat([extrinsics, intrinsics], dim=-1) |
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) |
|
return cameras |
|
|
|
|
|
def images_to_video(images, output_dir, fps=30): |
|
|
|
os.makedirs(os.path.dirname(output_dir), exist_ok=True) |
|
frames = [] |
|
for i in range(images.shape[0]): |
|
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) |
|
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ |
|
f"Frame shape mismatch: {frame.shape} vs {images.shape}" |
|
assert frame.min() >= 0 and frame.max() <= 255, \ |
|
f"Frame value out of range: {frame.min()} ~ {frame.max()}" |
|
frames.append(frame) |
|
imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264') |
|
|
|
|
|
|
|
|
|
|
|
|
|
seed_everything(0) |
|
|
|
config_path = 'configs/mesh-slrm-infer.yaml' |
|
config = OmegaConf.load(config_path) |
|
config_name = os.path.basename(config_path).replace('.yaml', '') |
|
model_config = config.model_config |
|
infer_config = config.infer_config |
|
|
|
IS_FLEXICUBES = True if config_name.startswith('mesh') else False |
|
|
|
device = torch.device('cuda') |
|
|
|
|
|
print('Loading reconstruction model ...') |
|
model = instantiate_from_config(model_config) |
|
state_dict = torch.load(infer_config.model_path, map_location='cpu') |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
model = model.to(device) |
|
if IS_FLEXICUBES: |
|
model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho) |
|
model = model.eval() |
|
|
|
print('Loading Finished!') |
|
|
|
def make_mesh(mesh_fpath, planes, level=None): |
|
|
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") |
|
|
|
with torch.no_grad(): |
|
|
|
mesh_out = model.extract_mesh( |
|
planes, |
|
use_texture_map=False, |
|
levels=torch.tensor([level]).to(device), |
|
**infer_config, |
|
) |
|
|
|
vertices, faces, vertex_colors = mesh_out |
|
vertices = vertices[:, [1, 2, 0]] |
|
|
|
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) |
|
save_obj(vertices, faces, vertex_colors, mesh_fpath) |
|
|
|
return mesh_fpath, mesh_glb_fpath |
|
|
|
|
|
def make3d(images, name, output_dir): |
|
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device) |
|
|
|
render_cameras = get_render_cameras( |
|
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device) |
|
|
|
images = images.unsqueeze(0).to(device) |
|
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
mesh_fpath = os.path.join(output_dir, f"{name}.obj") |
|
|
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") |
|
|
|
with torch.no_grad(): |
|
|
|
planes = model.forward_planes(images, input_cameras.float()) |
|
|
|
|
|
chunk_size = 20 if IS_FLEXICUBES else 1 |
|
render_size = 512 |
|
|
|
frames = [ [] for _ in range(4) ] |
|
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): |
|
if IS_FLEXICUBES: |
|
frame = model.forward_geometry_separate( |
|
planes, |
|
render_cameras[:, i:i+chunk_size], |
|
render_size=render_size, |
|
levels=torch.tensor([0]).to(device), |
|
)['imgs'] |
|
for j in range(4): |
|
frames[j].append(frame[j]) |
|
else: |
|
frame = model.synthesizer( |
|
planes, |
|
cameras=render_cameras[:, i:i+chunk_size], |
|
render_size=render_size, |
|
)['images_rgb'] |
|
frames.append(frame) |
|
|
|
for j in range(4): |
|
frames[j] = torch.cat(frames[j], dim=1) |
|
video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4') |
|
images_to_video( |
|
frames[j][0], |
|
video_fpath_j, |
|
fps=30, |
|
) |
|
|
|
_, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j]) |
|
|
|
return video_fpath, mesh_fpath, mesh_glb_fpath |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--input_dir', type=str, default="result/multiview") |
|
parser.add_argument('--output_dir', type=str, default="result/slrm") |
|
args = parser.parse_args() |
|
|
|
paths = glob.glob(args.input_dir + '/*') |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
def load_rgb(path): |
|
img = plt.imread(path) |
|
img = Image.fromarray(np.uint8(img * 255.)) |
|
return img |
|
|
|
for path in tqdm(paths): |
|
name = path.split('/')[-1] |
|
index_targets = [ |
|
'level0/color_0.png', |
|
'level0/color_1.png', |
|
'level0/color_2.png', |
|
'level0/color_3.png', |
|
'level0/color_4.png', |
|
'level0/color_5.png', |
|
] |
|
imgs = [] |
|
for index_target in index_targets: |
|
img = load_rgb(os.path.join(path, index_target)) |
|
imgs.append(img) |
|
|
|
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0 |
|
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() |
|
|
|
video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir) |
|
|
|
|