|
import spaces |
|
from PIL import Image |
|
|
|
import io |
|
import argparse |
|
import os |
|
import random |
|
import tempfile |
|
from typing import Dict, Optional, Tuple |
|
from omegaconf import OmegaConf |
|
import numpy as np |
|
|
|
import torch |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from diffusers.utils import check_min_version |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection |
|
from torchvision import transforms |
|
|
|
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel |
|
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel |
|
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline |
|
from einops import rearrange |
|
from torchvision.utils import save_image |
|
import json |
|
import cv2 |
|
|
|
import onnxruntime as rt |
|
from huggingface_hub.file_download import hf_hub_download |
|
from huggingface_hub import list_repo_files |
|
from rm_anime_bg.cli import get_mask, SCALE |
|
|
|
import argparse |
|
import os |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from typing import Dict, Optional, List |
|
from omegaconf import OmegaConf, DictConfig |
|
from PIL import Image |
|
from pathlib import Path |
|
from dataclasses import dataclass |
|
from typing import Dict |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import torchvision.transforms.functional as TF |
|
from torch.utils.data import Dataset, DataLoader |
|
from torchvision import transforms |
|
from torchvision.utils import make_grid, save_image |
|
from accelerate.utils import set_seed |
|
from tqdm.auto import tqdm |
|
from einops import rearrange, repeat |
|
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline |
|
|
|
import os |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
import glob |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from torchvision.transforms import v2 |
|
from pytorch_lightning import seed_everything |
|
from omegaconf import OmegaConf |
|
from tqdm import tqdm |
|
|
|
from slrm.utils.train_util import instantiate_from_config |
|
from slrm.utils.camera_util import ( |
|
FOV_to_intrinsics, |
|
get_circular_camera_poses, |
|
) |
|
from slrm.utils.mesh_util import save_obj, save_glb |
|
from slrm.utils.infer_util import images_to_video |
|
|
|
import cv2 |
|
import numpy as np |
|
import os |
|
import trimesh |
|
import argparse |
|
import torch |
|
import scipy |
|
from PIL import Image |
|
|
|
from refine.mesh_refine import geo_refine |
|
from refine.func import make_star_cameras_orthographic |
|
from refine.render import NormalsRenderer, calc_vertex_normals |
|
|
|
import pytorch3d |
|
from pytorch3d.structures import Meshes |
|
from sklearn.neighbors import KDTree |
|
|
|
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry |
|
|
|
check_min_version("0.24.0") |
|
weight_dtype = torch.float16 |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] |
|
|
|
|
|
@spaces.GPU |
|
def set_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
session_infer_path = hf_hub_download( |
|
repo_id="skytnt/anime-seg", filename="isnetis.onnx", |
|
) |
|
providers: list[str] = ["CPUExecutionProvider"] |
|
if "CUDAExecutionProvider" in rt.get_available_providers(): |
|
providers = ["CUDAExecutionProvider"] |
|
|
|
bkg_remover_session_infer = rt.InferenceSession( |
|
session_infer_path, providers=providers, |
|
) |
|
|
|
@spaces.GPU |
|
def remove_background( |
|
img: np.ndarray, |
|
alpha_min: float, |
|
alpha_max: float, |
|
) -> list: |
|
img = np.array(img) |
|
mask = get_mask(bkg_remover_session_infer, img) |
|
mask[mask < alpha_min] = 0.0 |
|
mask[mask > alpha_max] = 1.0 |
|
img_after = (mask * img).astype(np.uint8) |
|
mask = (mask * SCALE).astype(np.uint8) |
|
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8) |
|
return Image.fromarray(img_after) |
|
|
|
|
|
def process_image(image, totensor, width, height): |
|
assert image.mode == "RGBA" |
|
|
|
|
|
non_transparent = np.nonzero(np.array(image)[..., 3]) |
|
min_x, max_x = non_transparent[1].min(), non_transparent[1].max() |
|
min_y, max_y = non_transparent[0].min(), non_transparent[0].max() |
|
image = image.crop((min_x, min_y, max_x, max_y)) |
|
|
|
|
|
max_dim = max(image.width, image.height) |
|
max_height = int(max_dim * 1.2) |
|
max_width = int(max_dim / (height/width) * 1.2) |
|
new_image = Image.new("RGBA", (max_width, max_height)) |
|
left = (max_width - image.width) // 2 |
|
top = (max_height - image.height) // 2 |
|
new_image.paste(image, (left, top)) |
|
|
|
image = new_image.resize((width, height), resample=Image.BICUBIC) |
|
image = np.array(image) |
|
image = image.astype(np.float32) / 255. |
|
assert image.shape[-1] == 4 |
|
alpha = image[..., 3:4] |
|
bg_color = np.array([1., 1., 1.], dtype=np.float32) |
|
image = image[..., :3] * alpha + bg_color * (1 - alpha) |
|
return totensor(image) |
|
|
|
|
|
@spaces.GPU |
|
@torch.no_grad() |
|
def inference(validation_pipeline, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, |
|
text_encoder, pretrained_model_path, validation, val_width, val_height, unet_condition_type, |
|
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20): |
|
set_seed(seed) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
totensor = transforms.ToTensor() |
|
|
|
prompts = "high quality, best quality" |
|
prompt_ids = tokenizer( |
|
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, |
|
return_tensors="pt" |
|
).input_ids[0] |
|
|
|
|
|
B = 1 |
|
if input_image.mode != "RGBA": |
|
|
|
input_image = remove_background(input_image, 0.1, 0.9) |
|
imgs_in = process_image(input_image, totensor, val_width, val_height) |
|
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W") |
|
|
|
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype): |
|
imgs_in = imgs_in.to(device=device) |
|
|
|
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator, |
|
num_inference_steps=timestep, prompt_ids=prompt_ids, |
|
height=val_height, width=val_width, unet_condition_type=unet_condition_type, |
|
use_noise=use_noise, **validation,) |
|
out = rearrange(out, "B C f H W -> (B f) C H W", f=1) |
|
|
|
print("OUT!!!!!!") |
|
|
|
img_buf = io.BytesIO() |
|
save_image(out[0], img_buf, format='PNG') |
|
img_buf.seek(0) |
|
img = Image.open(img_buf) |
|
|
|
print("OUT2!!!!!!") |
|
|
|
torch.cuda.empty_cache() |
|
return img |
|
|
|
|
|
|
|
weight_dtype = torch.float16 |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
def tensor_to_numpy(tensor): |
|
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() |
|
|
|
|
|
@dataclass |
|
class TestConfig: |
|
pretrained_model_name_or_path: str |
|
pretrained_unet_path:Optional[str] |
|
revision: Optional[str] |
|
validation_dataset: Dict |
|
save_dir: str |
|
seed: Optional[int] |
|
validation_batch_size: int |
|
dataloader_num_workers: int |
|
save_mode: str |
|
local_rank: int |
|
|
|
pipe_kwargs: Dict |
|
pipe_validation_kwargs: Dict |
|
unet_from_pretrained_kwargs: Dict |
|
validation_grid_nrow: int |
|
camera_embedding_lr_mult: float |
|
|
|
num_views: int |
|
camera_embedding_type: str |
|
|
|
pred_type: str |
|
regress_elevation: bool |
|
enable_xformers_memory_efficient_attention: bool |
|
|
|
cond_on_normals: bool |
|
cond_on_colors: bool |
|
|
|
regress_elevation: bool |
|
regress_focal_length: bool |
|
|
|
|
|
|
|
def convert_to_numpy(tensor): |
|
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() |
|
|
|
def save_image(tensor): |
|
ndarr = convert_to_numpy(tensor) |
|
return save_image_numpy(ndarr) |
|
|
|
def save_image_numpy(ndarr): |
|
im = Image.fromarray(ndarr) |
|
|
|
if im.size[0] != im.size[1]: |
|
size = max(im.size) |
|
new_im = Image.new("RGB", (size, size)) |
|
|
|
new_im.paste((255, 255, 255), (0, 0, size, size)) |
|
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2)) |
|
im = new_im |
|
|
|
im = im.resize((1024, 1024), Image.LANCZOS) |
|
return im |
|
|
|
@spaces.GPU |
|
def run_multiview_infer(data, pipeline, cfg: TestConfig, num_levels=3): |
|
if cfg.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed) |
|
|
|
images_cond = [] |
|
results = {} |
|
|
|
torch.cuda.empty_cache() |
|
images_cond.append(data['image_cond_rgb'][:, 0].cuda()) |
|
imgs_in = torch.cat([data['image_cond_rgb']]*2, dim=0).cuda() |
|
num_views = imgs_in.shape[1] |
|
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W") |
|
|
|
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1] |
|
|
|
normal_prompt_embeddings, clr_prompt_embeddings = data['normal_prompt_embeddings'].cuda(), data['color_prompt_embeddings'].cuda() |
|
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) |
|
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") |
|
|
|
|
|
unet_out = pipeline( |
|
imgs_in, None, prompt_embeds=prompt_embeddings, |
|
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1, |
|
height=cfg.height, width=cfg.width, |
|
num_inference_steps=40, eta=1.0, |
|
num_levels=num_levels, |
|
) |
|
|
|
for level in range(num_levels): |
|
out = unet_out[level].images |
|
bsz = out.shape[0] // 2 |
|
|
|
normals_pred = out[:bsz] |
|
images_pred = out[bsz:] |
|
|
|
if num_levels == 2: |
|
results[level+1] = {'normals': [], 'images': []} |
|
else: |
|
results[level] = {'normals': [], 'images': []} |
|
|
|
for i in range(bsz//num_views): |
|
img_in_ = images_cond[-1][i].to(out.device) |
|
for j in range(num_views): |
|
view = VIEWS[j] |
|
idx = i*num_views + j |
|
normal = normals_pred[idx] |
|
color = images_pred[idx] |
|
|
|
|
|
new_normal = save_image(normal) |
|
new_color = save_image(color) |
|
|
|
if num_levels == 2: |
|
results[level+1]['normals'].append(new_normal) |
|
results[level+1]['images'].append(new_color) |
|
else: |
|
results[level]['normals'].append(new_normal) |
|
results[level]['images'].append(new_color) |
|
|
|
torch.cuda.empty_cache() |
|
return results |
|
|
|
@spaces.GPU |
|
def load_multiview_pipeline(cfg): |
|
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
cfg.pretrained_path, |
|
torch_dtype=torch.float16,) |
|
pipeline.unet.enable_xformers_memory_efficient_attention() |
|
if torch.cuda.is_available(): |
|
pipeline.to(device) |
|
return pipeline |
|
|
|
|
|
class InferAPI: |
|
def __init__(self, |
|
canonical_configs, |
|
multiview_configs, |
|
slrm_configs, |
|
refine_configs): |
|
self.canonical_configs = canonical_configs |
|
self.multiview_configs = multiview_configs |
|
self.slrm_configs = slrm_configs |
|
self.refine_configs = refine_configs |
|
|
|
repo_id = "hyz317/StdGEN" |
|
all_files = list_repo_files(repo_id, revision="main") |
|
for file in all_files: |
|
if os.path.exists(file): |
|
continue |
|
hf_hub_download(repo_id, file, local_dir="./ckpt") |
|
|
|
self.canonical_infer = InferCanonicalAPI(self.canonical_configs) |
|
|
|
|
|
|
|
|
|
def genStage1(self, img, seed): |
|
return self.canonical_infer.gen(img, seed) |
|
|
|
def genStage2(self, img, seed, num_levels): |
|
return self.multiview_infer.gen(img, seed, num_levels) |
|
|
|
def genStage3(self, img): |
|
return self.slrm_infer.gen(img) |
|
|
|
def genStage4(self, meshes, imgs): |
|
return self.refine_infer.refine(meshes, imgs) |
|
|
|
|
|
|
|
def fix_vert_color_glb(mesh_path): |
|
from pygltflib import GLTF2, Material, PbrMetallicRoughness |
|
obj1 = GLTF2().load(mesh_path) |
|
obj1.meshes[0].primitives[0].material = 0 |
|
obj1.materials.append(Material( |
|
pbrMetallicRoughness = PbrMetallicRoughness( |
|
baseColorFactor = [1.0, 1.0, 1.0, 1.0], |
|
metallicFactor = 0., |
|
roughnessFactor = 1.0, |
|
), |
|
emissiveFactor = [0.0, 0.0, 0.0], |
|
doubleSided = True, |
|
)) |
|
obj1.save(mesh_path) |
|
|
|
|
|
def srgb_to_linear(c_srgb): |
|
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4) |
|
return c_linear.clip(0, 1.) |
|
|
|
|
|
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True): |
|
|
|
vertices = meshes.verts_packed().cpu().float().numpy() |
|
triangles = meshes.faces_packed().cpu().long().numpy() |
|
np_color = meshes.textures.verts_features_packed().cpu().float().numpy() |
|
if save_glb_path.endswith(".glb"): |
|
|
|
vertices[:, [0, 2]] = -vertices[:, [0, 2]] |
|
|
|
if apply_sRGB_to_LinearRGB: |
|
np_color = srgb_to_linear(np_color) |
|
assert vertices.shape[0] == np_color.shape[0] |
|
assert np_color.shape[1] == 3 |
|
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}" |
|
np_color = np.clip(np_color, 0, 1) |
|
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color) |
|
mesh.remove_unreferenced_vertices() |
|
|
|
mesh.export(save_glb_path) |
|
if save_glb_path.endswith(".glb"): |
|
fix_vert_color_glb(save_glb_path) |
|
print(f"saving to {save_glb_path}") |
|
|
|
|
|
def calc_horizontal_offset(target_img, source_img): |
|
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750 |
|
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750 |
|
best_offset = -114514 |
|
for offset in range(-200, 200): |
|
offset_mask = np.roll(source_mask, offset, axis=1) |
|
overlap = (target_mask & offset_mask).sum() |
|
if overlap > best_offset: |
|
best_offset = overlap |
|
best_offset_value = offset |
|
return best_offset_value |
|
|
|
|
|
def calc_horizontal_offset2(target_mask, source_img): |
|
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750 |
|
best_offset = -114514 |
|
for offset in range(-200, 200): |
|
offset_mask = np.roll(source_mask, offset, axis=1) |
|
overlap = (target_mask & offset_mask).sum() |
|
if overlap > best_offset: |
|
best_offset = overlap |
|
best_offset_value = offset |
|
return best_offset_value |
|
|
|
|
|
@spaces.GPU |
|
def get_distract_mask(generator, color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20): |
|
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres |
|
if normal_0 is not None and normal_1 is not None: |
|
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres |
|
labeled_array, num_features = scipy.ndimage.label(distract_area) |
|
results = [] |
|
|
|
random_sampled_points = [] |
|
|
|
for i in range(num_features + 1): |
|
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000: |
|
results.append((i, np.sum(labeled_array == i))) |
|
|
|
points = np.argwhere(labeled_array == i) |
|
random_sampled_points.append(points[np.random.randint(0, points.shape[0])]) |
|
|
|
results = sorted(results, key=lambda x: x[1], reverse=True) |
|
distract_mask = np.zeros_like(distract_area) |
|
distract_bbox = np.zeros_like(distract_area) |
|
for i, _ in results: |
|
distract_mask |= labeled_array == i |
|
bbox = np.argwhere(labeled_array == i) |
|
min_x, min_y = bbox.min(axis=0) |
|
max_x, max_y = bbox.max(axis=0) |
|
distract_bbox[min_x:max_x, min_y:max_y] = 1 |
|
|
|
points = np.array(random_sampled_points)[:, ::-1] |
|
labels = np.ones(len(points), dtype=np.int32) |
|
|
|
masks = generator.generate((color_1 * 255).astype(np.uint8)) |
|
|
|
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres |
|
|
|
final_mask = np.zeros_like(distract_mask) |
|
for iii, mask in enumerate(masks): |
|
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5 |
|
intersection = np.logical_and(mask['segmentation'], distract_mask).sum() |
|
total = mask['segmentation'].sum() |
|
iou = intersection / total |
|
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum() |
|
outside_total = mask['segmentation'].sum() |
|
outside_iou = outside_intersection / outside_total |
|
if iou > ratio and outside_iou < outside_ratio: |
|
final_mask |= mask['segmentation'] |
|
|
|
|
|
intersection = np.logical_and(final_mask, distract_mask).sum() |
|
total = distract_mask.sum() |
|
coverage = intersection / total |
|
|
|
if coverage < 0.8: |
|
|
|
final_mask = (distract_mask.copy() * 255).astype(np.uint8) |
|
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3) |
|
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask) |
|
for i in range(num_features_dilate + 1): |
|
if np.sum(labeled_array_dilate == i) < 200: |
|
final_mask[labeled_array_dilate == i] = 255 |
|
|
|
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3) |
|
final_mask = final_mask > 127 |
|
|
|
return distract_mask, distract_bbox, random_sampled_points, final_mask |
|
|
|
|
|
class InferRefineAPI: |
|
@spaces.GPU |
|
def __init__(self, config): |
|
self.sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda() |
|
self.generator = SamAutomaticMaskGenerator( |
|
model=self.sam, |
|
points_per_side=64, |
|
pred_iou_thresh=0.80, |
|
stability_score_thresh=0.92, |
|
crop_n_layers=1, |
|
crop_n_points_downscale_factor=2, |
|
min_mask_region_area=100, |
|
) |
|
self.outside_ratio = 0.20 |
|
|
|
@spaces.GPU |
|
def refine(self, meshes, imgs): |
|
fixed_v, fixed_f, fixed_t = None, None, None |
|
flow_vert, flow_vector = None, None |
|
last_colors, last_normals = None, None |
|
last_front_color, last_front_normal = None, None |
|
distract_mask = None |
|
|
|
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2) |
|
mv = mv[[4, 3, 2, 0, 6, 5]] |
|
renderer = NormalsRenderer(mv,proj,(1024,1024)) |
|
|
|
results = [] |
|
|
|
for name_idx, level in zip([2, 0, 1], [2, 1, 0]): |
|
mesh = trimesh.load(meshes[name_idx]) |
|
new_mesh = mesh.split(only_watertight=False) |
|
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ] |
|
mesh = trimesh.Scene(new_mesh).dump(concatenate=True) |
|
mesh_v, mesh_f = mesh.vertices, mesh.faces |
|
|
|
if last_colors is None: |
|
images = renderer.render( |
|
torch.tensor(mesh_v, device='cuda').float(), |
|
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(), |
|
torch.tensor(mesh_f, device='cuda'), |
|
) |
|
mask = (images[..., 3] < 0.9).cpu().numpy() |
|
|
|
colors, normals = [], [] |
|
for i in range(6): |
|
color = np.array(imgs[level]['images'][i]) |
|
normal = np.array(imgs[level]['normals'][i]) |
|
|
|
if last_colors is not None: |
|
offset = calc_horizontal_offset(np.array(last_colors[i]), color) |
|
|
|
else: |
|
offset = calc_horizontal_offset2(mask[i], color) |
|
|
|
|
|
if offset != 0: |
|
color = np.roll(color, offset, axis=1) |
|
normal = np.roll(normal, offset, axis=1) |
|
|
|
color = Image.fromarray(color) |
|
normal = Image.fromarray(normal) |
|
colors.append(color) |
|
normals.append(normal) |
|
|
|
if last_front_color is not None and level == 0: |
|
original_mask, distract_bbox, _, distract_mask = get_distract_mask(self.generator, last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=self.outside_ratio) |
|
else: |
|
distract_mask = None |
|
distract_bbox = None |
|
|
|
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0 |
|
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0 |
|
|
|
if last_colors is None: |
|
from copy import deepcopy |
|
last_colors, last_normals = deepcopy(colors), deepcopy(normals) |
|
|
|
|
|
if fixed_v is not None and fixed_f is not None and level == 1: |
|
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f) |
|
|
|
fixed_v_cpu = fixed_v.cpu().numpy() |
|
kdtree_anchor = KDTree(fixed_v_cpu) |
|
kdtree_mesh_v = KDTree(mesh_v) |
|
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1) |
|
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25) |
|
idx_anchor = idx_anchor.squeeze() |
|
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] |
|
|
|
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1) |
|
neighbor_dists[neighbor_dists > 0.06] = 114514. |
|
neighbor_weights = torch.exp(-neighbor_dists * 1.) |
|
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True) |
|
anchors = fixed_v[idx_anchor] |
|
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] |
|
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01 |
|
vec_anchor = dis_anchor[:, None] * anchor_normals |
|
vec_anchor = vec_anchor[idx_mesh_v] |
|
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) |
|
mesh_v += weighted_vec_anchor.cpu().numpy() |
|
|
|
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f) |
|
|
|
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32) |
|
mesh_f = torch.tensor(mesh_f, device='cuda') |
|
|
|
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox) |
|
|
|
|
|
try: |
|
if fixed_v is not None and fixed_f is not None and level != 0: |
|
new_mesh_v = new_mesh.verts_packed().cpu().numpy() |
|
|
|
fixed_v_cpu = fixed_v.cpu().numpy() |
|
kdtree_anchor = KDTree(fixed_v_cpu) |
|
kdtree_mesh_v = KDTree(new_mesh_v) |
|
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1) |
|
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25) |
|
idx_anchor = idx_anchor.squeeze() |
|
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] |
|
|
|
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1) |
|
neighbor_dists[neighbor_dists > 0.06] = 114514. |
|
neighbor_weights = torch.exp(-neighbor_dists * 1.) |
|
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True) |
|
anchors = fixed_v[idx_anchor] |
|
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] |
|
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01 |
|
vec_anchor = dis_anchor[:, None] * anchor_normals |
|
vec_anchor = vec_anchor[idx_mesh_v] |
|
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) |
|
new_mesh_v += weighted_vec_anchor.cpu().numpy() |
|
|
|
|
|
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures) |
|
|
|
except Exception as e: |
|
pass |
|
|
|
notsimp_v, notsimp_f, notsimp_t = new_mesh.verts_packed(), new_mesh.faces_packed(), new_mesh.textures.verts_features_packed() |
|
|
|
if fixed_v is None: |
|
fixed_v, fixed_f = simp_v, simp_f |
|
complete_v, complete_f, complete_t = notsimp_v, notsimp_f, notsimp_t |
|
else: |
|
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0) |
|
fixed_v = torch.cat([fixed_v, simp_v], dim=0) |
|
|
|
complete_f = torch.cat([complete_f, notsimp_f + complete_v.shape[0]], dim=0) |
|
complete_v = torch.cat([complete_v, notsimp_v], dim=0) |
|
complete_t = torch.cat([complete_t, notsimp_t], dim=0) |
|
|
|
if level == 2: |
|
new_mesh = Meshes(verts=[new_mesh.verts_packed()], faces=[new_mesh.faces_packed()], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[torch.ones_like(new_mesh.textures.verts_features_packed(), device=new_mesh.verts_packed().device)*0.5])) |
|
|
|
save_py3dmesh_with_trimesh_fast(new_mesh, meshes[name_idx].replace('.obj', '_refined.obj'), apply_sRGB_to_LinearRGB=False) |
|
results.append(meshes[name_idx].replace('.obj', '_refined.obj')) |
|
|
|
|
|
save_py3dmesh_with_trimesh_fast(Meshes(verts=[complete_v], faces=[complete_f], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[complete_t])), meshes[name_idx].replace('.obj', '_refined_whole.obj'), apply_sRGB_to_LinearRGB=False) |
|
results.append(meshes[name_idx].replace('.obj', '_refined_whole.obj')) |
|
|
|
return results |
|
|
|
|
|
class InferSlrmAPI: |
|
@spaces.GPU |
|
def __init__(self, config): |
|
self.config_path = config['config_path'] |
|
self.config = OmegaConf.load(self.config_path) |
|
self.config_name = os.path.basename(self.config_path).replace('.yaml', '') |
|
self.model_config = self.config.model_config |
|
self.infer_config = self.config.infer_config |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.model = instantiate_from_config(self.model_config) |
|
state_dict = torch.load(self.infer_config.model_path, map_location='cpu') |
|
self.model.load_state_dict(state_dict, strict=False) |
|
self.model = self.model.to(self.device) |
|
self.model.init_flexicubes_geometry(self.device, fovy=30.0, is_ortho=self.model.is_ortho) |
|
self.model = self.model.eval() |
|
|
|
@spaces.GPU |
|
def gen(self, imgs): |
|
imgs = [ cv2.imread(img[0])[:, :, ::-1] for img in imgs ] |
|
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0 |
|
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() |
|
mesh_glb_fpaths = self.make3d(imgs) |
|
return mesh_glb_fpaths[1:4] + mesh_glb_fpaths[0:1] |
|
|
|
@spaces.GPU |
|
def make3d(self, images): |
|
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device) |
|
|
|
images = images.unsqueeze(0).to(device) |
|
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|
print(mesh_fpath) |
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
|
|
with torch.no_grad(): |
|
|
|
planes = self.model.forward_planes(images, input_cameras.float()) |
|
|
|
|
|
mesh_glb_fpaths = [] |
|
for j in range(4): |
|
mesh_glb_fpath = self.make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j]) |
|
mesh_glb_fpaths.append(mesh_glb_fpath) |
|
|
|
return mesh_glb_fpaths |
|
|
|
@spaces.GPU |
|
def make_mesh(self, mesh_fpath, planes, level=None): |
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") |
|
|
|
with torch.no_grad(): |
|
|
|
mesh_out = self.model.extract_mesh( |
|
planes, |
|
use_texture_map=False, |
|
levels=torch.tensor([level]).to(device), |
|
**self.infer_config, |
|
) |
|
|
|
vertices, faces, vertex_colors = mesh_out |
|
vertices = vertices[:, [1, 2, 0]] |
|
|
|
if level == 2: |
|
|
|
vertex_colors = np.ones_like(vertex_colors) * 127 |
|
|
|
save_obj(vertices, faces, vertex_colors, mesh_fpath) |
|
|
|
return mesh_fpath |
|
|
|
class InferMultiviewAPI: |
|
def __init__(self, config): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--seed", type=int, default=42) |
|
parser.add_argument("--num_views", type=int, default=6) |
|
parser.add_argument("--num_levels", type=int, default=3) |
|
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024') |
|
parser.add_argument("--height", type=int, default=1024) |
|
parser.add_argument("--width", type=int, default=576) |
|
self.cfg = parser.parse_args() |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.pipeline = load_multiview_pipeline(self.cfg) |
|
self.results = {} |
|
if torch.cuda.is_available(): |
|
self.pipeline.to(device) |
|
|
|
self.image_transforms = [transforms.Resize(int(max(self.cfg.height, self.cfg.width))), |
|
transforms.CenterCrop((self.cfg.height, self.cfg.width)), |
|
transforms.ToTensor(), |
|
transforms.Lambda(lambda x: x * 2. - 1), |
|
] |
|
self.image_transforms = transforms.Compose(self.image_transforms) |
|
|
|
prompt_embeds_path = './multiview/fixed_prompt_embeds_6view' |
|
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt') |
|
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt') |
|
self.total_views = self.cfg.num_views |
|
|
|
|
|
def process_im(self, im): |
|
im = self.image_transforms(im) |
|
return im |
|
|
|
def gen(self, img, seed, num_levels): |
|
set_seed(seed) |
|
data = {} |
|
|
|
cond_im_rgb = self.process_im(img) |
|
cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0) |
|
data["image_cond_rgb"] = cond_im_rgb[None, ...] |
|
data["normal_prompt_embeddings"] = self.normal_text_embeds[None, ...] |
|
data["color_prompt_embeddings"] = self.color_text_embeds[None, ...] |
|
|
|
results = run_multiview_infer(data, self.pipeline, self.cfg, num_levels=num_levels) |
|
for k in results: |
|
self.results[k] = results[k] |
|
return results |
|
|
|
|
|
class InferCanonicalAPI: |
|
def __init__(self, config): |
|
self.config = config |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
self.config_path = config['config_path'] |
|
self.loaded_config = OmegaConf.load(self.config_path) |
|
|
|
self.setup(**self.loaded_config) |
|
|
|
def setup(self, |
|
validation: Dict, |
|
pretrained_model_path: str, |
|
local_crossattn: bool = True, |
|
unet_from_pretrained_kwargs=None, |
|
unet_condition_type=None, |
|
use_noise=True, |
|
noise_d=256, |
|
timestep: int = 40, |
|
width_input: int = 640, |
|
height_input: int = 1024, |
|
): |
|
self.width_input = width_input |
|
self.height_input = height_input |
|
self.timestep = timestep |
|
self.use_noise = use_noise |
|
self.noise_d = noise_d |
|
self.validation = validation |
|
self.unet_condition_type = unet_condition_type |
|
self.pretrained_model_path = pretrained_model_path |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") |
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder") |
|
self.feature_extractor = CLIPImageProcessor() |
|
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") |
|
self.unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs) |
|
self.ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs) |
|
|
|
self.text_encoder.to(device, dtype=weight_dtype) |
|
self.image_encoder.to(device, dtype=weight_dtype) |
|
self.vae.to(device, dtype=weight_dtype) |
|
self.ref_unet.to(device, dtype=weight_dtype) |
|
self.unet.to(device, dtype=weight_dtype) |
|
|
|
self.vae.requires_grad_(False) |
|
self.ref_unet.requires_grad_(False) |
|
self.unet.requires_grad_(False) |
|
|
|
self.noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr") |
|
self.validation_pipeline = CanonicalizationPipeline( |
|
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, ref_unet=self.ref_unet,feature_extractor=self.feature_extractor,image_encoder=self.image_encoder, |
|
scheduler=self.noise_scheduler |
|
) |
|
self.validation_pipeline.set_progress_bar_config(disable=True) |
|
|
|
def canonicalize(self, image, seed): |
|
return inference( |
|
self.validation_pipeline, image, self.vae, self.feature_extractor, self.image_encoder, self.unet, self.ref_unet, self.tokenizer, self.text_encoder, |
|
self.pretrained_model_path, self.validation, self.width_input, self.height_input, self.unet_condition_type, |
|
use_noise=self.use_noise, noise_d=self.noise_d, crop=True, seed=seed, timestep=self.timestep |
|
) |
|
|
|
def gen(self, img_input, seed=0): |
|
if np.array(img_input).shape[-1] == 4 and np.array(img_input)[..., 3].min() == 255: |
|
|
|
img_input = img_input.convert("RGB") |
|
img_output = self.canonicalize(img_input, seed) |
|
|
|
max_dim = max(img_output.width, img_output.height) |
|
new_image = Image.new("RGBA", (max_dim, max_dim)) |
|
left = (max_dim - img_output.width) // 2 |
|
top = (max_dim - img_output.height) // 2 |
|
new_image.paste(img_output, (left, top)) |
|
|
|
return new_image |
|
|