Spaces:
Runtime error
Runtime error
Commit
·
f147ebd
1
Parent(s):
5f617db
update lfs
Browse files
README.md
CHANGED
@@ -4,230 +4,12 @@ emoji: 👀
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: gpl-3.0
|
11 |
---
|
12 |
|
13 |
-
|
14 |
-
<div align="center">
|
15 |
-
<img src="./assets/yolo_logo.png" width=60%>
|
16 |
-
<br>
|
17 |
-
<a href="https://scholar.google.com/citations?hl=zh-CN&user=PH8rJHYAAAAJ">Tianheng Cheng</a><sup><span>2,3,*</span></sup>,
|
18 |
-
<a href="https://linsong.info/">Lin Song</a><sup><span>1,📧,*</span></sup>,
|
19 |
-
<a href="https://yxgeee.github.io/">Yixiao Ge</a><sup><span>1,🌟,2</span></sup>,
|
20 |
-
<a href="http://eic.hust.edu.cn/professor/liuwenyu/"> Wenyu Liu</a><sup><span>3</span></sup>,
|
21 |
-
<a href="https://xwcv.github.io/">Xinggang Wang</a><sup><span>3,📧</span></sup>,
|
22 |
-
<a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en">Ying Shan</a><sup><span>1,2</span></sup>
|
23 |
-
</br>
|
24 |
-
|
25 |
-
\* Equal contribution 🌟 Project lead 📧 Corresponding author
|
26 |
-
|
27 |
-
<sup>1</sup> Tencent AI Lab, <sup>2</sup> ARC Lab, Tencent PCG
|
28 |
-
<sup>3</sup> Huazhong University of Science and Technology
|
29 |
-
<br>
|
30 |
-
<div>
|
31 |
-
|
32 |
-
[](https://wondervictor.github.io/)
|
33 |
-
[](https://arxiv.org/abs/2401.17270)
|
34 |
-
<a href="https://colab.research.google.com/github/AILab-CVC/YOLO-World/blob/master/inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
35 |
-
[](https://huggingface.co/spaces/stevengrove/YOLO-World)
|
36 |
-
[](https://replicate.com/zsxkib/yolo-world)
|
37 |
-
[](https://huggingface.co/papers/2401.17270)
|
38 |
-
[](LICENSE)
|
39 |
-
[](https://huggingface.co/spaces/SkalskiP/YOLO-World)
|
40 |
-
[](https://supervision.roboflow.com/develop/notebooks/zero-shot-object-detection-with-yolo-world)
|
41 |
-
[](https://inference.roboflow.com/foundation/yolo_world/)
|
42 |
-
|
43 |
-
</div>
|
44 |
-
</div>
|
45 |
-
|
46 |
-
## Notice
|
47 |
-
|
48 |
-
We recommend that everyone **use English to communicate on issues**, as this helps developers from around the world discuss, share experiences, and answer questions together.
|
49 |
-
|
50 |
-
## 🔥 Updates
|
51 |
-
`[2024-5-18]:` YOLO-World models have been [integrated with the FiftyOne computer vision toolkit](https://docs.voxel51.com/integrations/ultralytics.html#open-vocabulary-detection) for streamlined open-vocabulary inference across image and video datasets.
|
52 |
-
`[2024-5-16]:` Hey guys! Long time no see! This update contains (1) [fine-tuning guide](https://github.com/AILab-CVC/YOLO-World?#highlights--introduction) and (2) [TFLite Export](./docs/tflite_deploy.md) with INT8 Quantization.
|
53 |
-
`[2024-5-9]:` This update contains the real [`reparameterization`](./docs/reparameterize.md) 🪄, and it's better for fine-tuning on custom datasets and improves the training/inference efficiency 🚀!
|
54 |
-
`[2024-4-28]:` Long time no see! This update contains bugfixs and improvements: (1) ONNX demo; (2) image demo (support tensor input); (2) new pre-trained models; (3) image prompts; (4) simple version for fine-tuning / deployment; (5) guide for installation (include a `requirements.txt`).
|
55 |
-
`[2024-3-28]:` We provide: (1) more high-resolution pre-trained models (e.g., S, M, X) ([#142](https://github.com/AILab-CVC/YOLO-World/issues/142)); (2) pre-trained models with CLIP-Large text encoders. Most importantly, we preliminarily fix the **fine-tuning without `mask-refine`** and explore a new fine-tuning setting ([#160](https://github.com/AILab-CVC/YOLO-World/issues/160),[#76](https://github.com/AILab-CVC/YOLO-World/issues/76)). In addition, fine-tuning YOLO-World with `mask-refine` also obtains significant improvements, check more details in [configs/finetune_coco](./configs/finetune_coco/).
|
56 |
-
`[2024-3-16]:` We fix the bugs about the demo ([#110](https://github.com/AILab-CVC/YOLO-World/issues/110),[#94](https://github.com/AILab-CVC/YOLO-World/issues/94),[#129](https://github.com/AILab-CVC/YOLO-World/issues/129), [#125](https://github.com/AILab-CVC/YOLO-World/issues/125)) with visualizations of segmentation masks, and release [**YOLO-World with Embeddings**](./docs/prompt_yolo_world.md), which supports prompt tuning, text prompts and image prompts.
|
57 |
-
`[2024-3-3]:` We add the **high-resolution YOLO-World**, which supports `1280x1280` resolution with higher accuracy and better performance for small objects!
|
58 |
-
`[2024-2-29]:` We release the newest version of [ **YOLO-World-v2**](./docs/updates.md) with higher accuracy and faster speed! We hope the community can join us to improve YOLO-World!
|
59 |
-
`[2024-2-28]:` Excited to announce that YOLO-World has been accepted by **CVPR 2024**! We're continuing to make YOLO-World faster and stronger, as well as making it better to use for all.
|
60 |
-
`[2024-2-22]:` We sincerely thank [RoboFlow](https://roboflow.com/) and [@Skalskip92](https://twitter.com/skalskip92) for the [**Video Guide**](https://www.youtube.com/watch?v=X7gKBGVz4vs) about YOLO-World, nice work!
|
61 |
-
`[2024-2-18]:` We thank [@Skalskip92](https://twitter.com/skalskip92) for developing the wonderful segmentation demo via connecting YOLO-World and EfficientSAM. You can try it now at the [🤗 HuggingFace Spaces](https://huggingface.co/spaces/SkalskiP/YOLO-World).
|
62 |
-
`[2024-2-17]:` The largest model **X** of YOLO-World is released, which achieves better zero-shot performance!
|
63 |
-
`[2024-2-17]:` We release the code & models for **YOLO-World-Seg** now! YOLO-World now supports open-vocabulary / zero-shot object segmentation!
|
64 |
-
`[2024-2-15]:` The pre-traind YOLO-World-L with CC3M-Lite is released!
|
65 |
-
`[2024-2-14]:` We provide the [`image_demo`](demo.py) for inference on images or directories.
|
66 |
-
`[2024-2-10]:` We provide the [fine-tuning](./docs/finetuning.md) and [data](./docs/data.md) details for fine-tuning YOLO-World on the COCO dataset or the custom datasets!
|
67 |
-
`[2024-2-3]:` We support the `Gradio` demo now in the repo and you can build the YOLO-World demo on your own device!
|
68 |
-
`[2024-2-1]:` We've released the code and weights of YOLO-World now!
|
69 |
-
`[2024-2-1]:` We deploy the YOLO-World demo on [HuggingFace 🤗](https://huggingface.co/spaces/stevengrove/YOLO-World), you can try it now!
|
70 |
-
`[2024-1-31]:` We are excited to launch **YOLO-World**, a cutting-edge real-time open-vocabulary object detector.
|
71 |
-
|
72 |
-
|
73 |
-
## TODO
|
74 |
-
|
75 |
-
YOLO-World is under active development and please stay tuned ☕️!
|
76 |
-
If you have suggestions📃 or ideas💡,**we would love for you to bring them up in the [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109)** ❤️!
|
77 |
-
> YOLO-World 目前正在积极开发中📃,如果你有建议或者想法💡,**我们非常希望您在 [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109) 中提出来** ❤️!
|
78 |
-
|
79 |
-
## [FAQ (Frequently Asked Questions)](https://github.com/AILab-CVC/YOLO-World/discussions/149)
|
80 |
-
|
81 |
-
We have set up an FAQ about YOLO-World in the discussion on GitHub. We hope everyone can raise issues or solutions during use here, and we also hope that everyone can quickly find solutions from it.
|
82 |
-
|
83 |
-
> 我们在GitHub的discussion中建立了关于YOLO-World的常见问答,这里将收集一些常见问题,同时大家可以在此提出使用中的问题或者解决方案,也希望大家能够从中快速寻找到解决方案
|
84 |
-
|
85 |
-
|
86 |
-
## Highlights & Introduction
|
87 |
-
|
88 |
-
This repo contains the PyTorch implementation, pre-trained weights, and pre-training/fine-tuning code for YOLO-World.
|
89 |
-
|
90 |
-
* YOLO-World is pre-trained on large-scale datasets, including detection, grounding, and image-text datasets.
|
91 |
-
|
92 |
-
* YOLO-World is the next-generation YOLO detector, with a strong open-vocabulary detection capability and grounding ability.
|
93 |
-
|
94 |
-
* YOLO-World presents a *prompt-then-detect* paradigm for efficient user-vocabulary inference, which re-parameterizes vocabulary embeddings as parameters into the model and achieve superior inference speed. You can try to export your own detection model without extra training or fine-tuning in our [online demo](https://huggingface.co/spaces/stevengrove/YOLO-World)!
|
95 |
-
|
96 |
-
|
97 |
-
<div align="center">
|
98 |
-
<img width=800px src="./assets/yolo_arch.png">
|
99 |
-
</div>
|
100 |
-
## Model Zoo
|
101 |
-
|
102 |
-
We've pre-trained YOLO-World-S/M/L from scratch and evaluate on the `LVIS val-1.0` and `LVIS minival`. We provide the pre-trained model weights and training logs for applications/research or re-producing the results.
|
103 |
-
|
104 |
-
### Zero-shot Inference on LVIS dataset
|
105 |
-
|
106 |
-
<div><font size=2>
|
107 |
-
|
108 |
-
| model | Pre-train Data | Size | AP<sup>mini</su> | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> | AP<sup>val</su> | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> | weights |
|
109 |
-
| :------------------------------------------------------------------------------------------------------------------- | :------------------- | :----------------- | :--------------: | :------------: | :------------: | :------------: | :-------------: | :------------: | :------------: | :------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
110 |
-
| [YOLO-Worldv2-S](./configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 22.7 | 16.3 | 20.8 | 25.5 | 17.3 | 11.3 | 14.9 | 22.7 |[HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain-55b943ea.pth)|
|
111 |
-
| [YOLO-Worldv2-S](./configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 24.1 | 18.7 | 22.0 | 26.9 | 18.8 | 14.1 | 16.3 | 23.8 |[HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain_1280ft-fc4ff4f7.pth)|
|
112 |
-
| [YOLO-Worldv2-M](./configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 30.0 | 25.0 | 27.2 | 33.4 | 23.5 | 17.1 | 20.0 | 30.1 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain-c6237d5b.pth)|
|
113 |
-
| [YOLO-Worldv2-M](./configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 31.6 | 24.5 | 29.0 | 35.1 | 25.3 | 19.3 | 22.0 | 31.7 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain_1280ft-77d0346d.pth)|
|
114 |
-
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 33.0 | 22.6 | 32.0 | 35.8 | 26.0 | 18.6 | 23.0 | 32.6 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth)|
|
115 |
-
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 34.6 | 29.2 | 32.8 | 37.2 | 27.6 | 21.9 | 24.2 | 34.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain_1280ft-9babe3f6.pth)|
|
116 |
-
| [YOLO-Worldv2-L (CLIP-Large)](./configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) 🔥 | O365+GoldG | 640 | 34.0 | 22.0 | 32.6 | 37.4 | 27.1 | 19.9 | 23.9 | 33.9 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain-8ff2e744.pth)|
|
117 |
-
| [YOLO-Worldv2-L (CLIP-Large)](./configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_800ft_lvis_minival.py) 🔥 | O365+GoldG | 800🔸 | 35.5 | 28.3 | 33.2 | 38.8 | 28.6 | 22.0 | 25.1 | 35.4 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain_800ft-9df82e55.pth)|
|
118 |
-
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 32.9 | 25.3 | 31.1 | 35.8 | 26.1 | 20.6 | 22.6 | 32.3 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_cc3mlite_pretrain-ca93cd1f.pth)|
|
119 |
-
| [YOLO-Worldv2-X](./configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 35.4 | 28.7 | 32.9 | 38.7 | 28.4 | 20.6 | 25.6 | 35.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth) |
|
120 |
-
| 🔥 [YOLO-Worldv2-X]() | O365+GoldG+CC3M-Lite | 1280🔸 | 37.4 | 30.5 | 35.2 | 40.7 | 29.8 | 21.1 | 26.8 | 37.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain_1280ft-14996a36.pth) |
|
121 |
-
| [YOLO-Worldv2-XL](./configs/pretrain/yolo_world_v2_xl_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 36.0 | 25.8 | 34.1 | 39.5 | 29.1 | 21.1 | 26.3 | 35.8 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_xl_obj365v1_goldg_cc3mlite_pretrain-5daf1395.pth) |
|
122 |
-
|
123 |
-
</font>
|
124 |
-
</div>
|
125 |
-
|
126 |
-
**NOTE:**
|
127 |
-
1. AP<sup>mini</sup>: evaluated on LVIS `minival`.
|
128 |
-
3. AP<sup>val</sup>: evaluated on LVIS `val 1.0`.
|
129 |
-
4. [HuggingFace Mirror](https://hf-mirror.com/) provides the mirror of HuggingFace, which is a choice for users who are unable to reach.
|
130 |
-
5. 🔸: fine-tuning models with the pre-trained data.
|
131 |
-
|
132 |
-
**Pre-training Logs:**
|
133 |
-
|
134 |
-
We provide the pre-training logs of `YOLO-World-v2`. Due to the unexpected errors of the local machines, the training might be interrupted several times.
|
135 |
-
|
136 |
-
| Model | YOLO-World-v2-S | YOLO-World-v2-M | YOLO-World-v2-L | YOLO-World-v2-X |
|
137 |
-
| :--- | :-------------: | :--------------: | :-------------: | :-------------: |
|
138 |
-
|Pre-training Log | [Part-1](https://drive.google.com/file/d/1oib7pKfA2h1U_5-85H_s0Nz8jWd0R-WP/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/11cZ6OZy80VTvBlZy3kzLAHCxx5Iix5-n/view?usp=drive_link) | [Part-1](https://drive.google.com/file/d/1E6vYSS8kBipGc8oQnsjAfeUAx8I9yOX7/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/1fbM7vt2tgSeB8o_7tUDofWvpPNSViNj5/view?usp=drive_link) | [Part-1](https://drive.google.com/file/d/1Tola1QGJZTL6nGy3SBxKuknfNfREDm8J/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/1mTBXniioUb0CdctCG4ckIU6idGo0NnH8/view?usp=drive_link) | [Final part](https://drive.google.com/file/d/1aEUA_EPQbXOrpxHTQYB6ieGXudb1PLpd/view?usp=drive_link)|
|
139 |
-
|
140 |
-
|
141 |
-
## Getting started
|
142 |
-
|
143 |
-
### 1. Installation
|
144 |
-
|
145 |
-
YOLO-World is developed based on `torch==1.11.0` `mmyolo==0.6.0` and `mmdetection==3.0.0`. Check more details about `requirements` and `mmcv` in [docs/installation](./docs/installation.md).
|
146 |
-
|
147 |
-
#### Clone Project
|
148 |
-
|
149 |
-
```bash
|
150 |
-
git clone --recursive https://github.com/AILab-CVC/YOLO-World.git
|
151 |
-
```
|
152 |
-
#### Install
|
153 |
-
|
154 |
-
```bash
|
155 |
-
pip install torch wheel -q
|
156 |
-
pip install -e .
|
157 |
-
```
|
158 |
-
|
159 |
-
### 2. Preparing Data
|
160 |
-
|
161 |
-
We provide the details about the pre-training data in [docs/data](./docs/data.md).
|
162 |
-
|
163 |
-
|
164 |
-
## Training & Evaluation
|
165 |
-
|
166 |
-
We adopt the default [training](./tools/train.py) or [evaluation](./tools/test.py) scripts of [mmyolo](https://github.com/open-mmlab/mmyolo).
|
167 |
-
We provide the configs for pre-training and fine-tuning in `configs/pretrain` and `configs/finetune_coco`.
|
168 |
-
Training YOLO-World is easy:
|
169 |
-
|
170 |
-
```bash
|
171 |
-
chmod +x tools/dist_train.sh
|
172 |
-
# sample command for pre-training, use AMP for mixed-precision training
|
173 |
-
./tools/dist_train.sh configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py 8 --amp
|
174 |
-
```
|
175 |
-
**NOTE:** YOLO-World is pre-trained on 4 nodes with 8 GPUs per node (32 GPUs in total). For pre-training, the `node_rank` and `nnodes` for multi-node training should be specified.
|
176 |
-
|
177 |
-
Evaluating YOLO-World is also easy:
|
178 |
-
|
179 |
-
```bash
|
180 |
-
chmod +x tools/dist_test.sh
|
181 |
-
./tools/dist_test.sh path/to/config path/to/weights 8
|
182 |
-
```
|
183 |
-
|
184 |
-
**NOTE:** We mainly evaluate the performance on LVIS-minival for pre-training.
|
185 |
-
|
186 |
-
## Fine-tuning YOLO-World
|
187 |
-
|
188 |
-
<div align="center">
|
189 |
-
<img src="./assets/finetune_yoloworld.png" width=800px>
|
190 |
-
</div>
|
191 |
-
|
192 |
-
|
193 |
-
<div align="center">
|
194 |
-
<b><p>Chose your pre-trained YOLO-World and Fine-tune it!</p></b>
|
195 |
-
</div>
|
196 |
-
|
197 |
-
|
198 |
-
YOLO-World supports **zero-shot inference**, and three types of **fine-tuning recipes**: **(1) normal fine-tuning**, **(2) prompt tuning**, and **(3) reparameterized fine-tuning**.
|
199 |
-
|
200 |
-
* Normal Fine-tuning: we provide the details about fine-tuning YOLO-World in [docs/fine-tuning](./docs/finetuning.md).
|
201 |
-
|
202 |
-
* Prompt Tuning: we provide more details ahout prompt tuning in [docs/prompt_yolo_world](./docs/prompt_yolo_world.md).
|
203 |
-
|
204 |
-
* Reparameterized Fine-tuning: the reparameterized YOLO-World is more suitable for specific domains far from generic scenes. You can find more details in [docs/reparameterize](./docs/reparameterize.md).
|
205 |
-
|
206 |
-
## Deployment
|
207 |
-
|
208 |
-
We provide the details about deployment for downstream applications in [docs/deployment](./docs/deploy.md).
|
209 |
-
You can directly download the ONNX model through the online [demo](https://huggingface.co/spaces/stevengrove/YOLO-World) in Huggingface Spaces 🤗.
|
210 |
-
|
211 |
-
- [x] ONNX export and demo: [docs/deploy](https://github.com/AILab-CVC/YOLO-World/blob/master/docs/deploy.md)
|
212 |
-
- [x] TFLite and INT8 Quantization: [docs/tflite_deploy](https://github.com/AILab-CVC/YOLO-World/blob/master/docs/tflite_deploy.md)
|
213 |
-
- [ ] TensorRT: coming soon.
|
214 |
-
- [ ] C++: coming soon.
|
215 |
-
|
216 |
-
## Demo
|
217 |
-
|
218 |
-
See [`demo`](./demo) for more details
|
219 |
-
|
220 |
-
- [x] `gradio_demo.py`: Gradio demo, ONNX export
|
221 |
-
- [x] `image_demo.py`: inference with images or a directory of images
|
222 |
-
- [x] `simple_demo.py`: a simple demo of YOLO-World, using `array` (instead of path as input).
|
223 |
-
- [x] `video_demo.py`: inference YOLO-World on videos.
|
224 |
-
- [x] `inference.ipynb`: jupyter notebook for YOLO-World.
|
225 |
-
- [x] [Google Colab Notebook](https://colab.research.google.com/drive/1F_7S5lSaFM06irBCZqjhbN7MpUXo6WwO?usp=sharing): We sincerely thank [Onuralp](https://github.com/onuralpszr) for sharing the [Colab Demo](https://colab.research.google.com/drive/1F_7S5lSaFM06irBCZqjhbN7MpUXo6WwO?usp=sharing), you can have a try 😊!
|
226 |
-
|
227 |
-
## Acknowledgement
|
228 |
-
|
229 |
-
We sincerely thank [mmyolo](https://github.com/open-mmlab/mmyolo), [mmdetection](https://github.com/open-mmlab/mmdetection), [GLIP](https://github.com/microsoft/GLIP), and [transformers](https://github.com/huggingface/transformers) for providing their wonderful code to the community!
|
230 |
-
|
231 |
## Citations
|
232 |
If you find YOLO-World is useful in your research or applications, please consider giving us a star 🌟 and citing it.
|
233 |
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: gpl-3.0
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
## Citations
|
14 |
If you find YOLO-World is useful in your research or applications, please consider giving us a star 🌟 and citing it.
|
15 |
|