Spaces:
Runtime error
Runtime error
| # Copyright (c) Tencent Inc. All rights reserved. | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor | |
| from mmdet.models.losses.mse_loss import mse_loss | |
| from mmyolo.registry import MODELS | |
| class CoVMSELoss(nn.Module): | |
| def __init__(self, | |
| dim: int = 0, | |
| reduction: str = 'mean', | |
| loss_weight: float = 1.0, | |
| eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.dim = dim | |
| self.reduction = reduction | |
| self.loss_weight = loss_weight | |
| self.eps = eps | |
| def forward(self, | |
| pred: Tensor, | |
| weight: Optional[Tensor] = None, | |
| avg_factor: Optional[int] = None, | |
| reduction_override: Optional[str] = None) -> Tensor: | |
| """Forward function of loss.""" | |
| assert reduction_override in (None, 'none', 'mean', 'sum') | |
| reduction = ( | |
| reduction_override if reduction_override else self.reduction) | |
| cov = pred.std(self.dim) / pred.mean(self.dim).clamp(min=self.eps) | |
| target = torch.zeros_like(cov) | |
| loss = self.loss_weight * mse_loss( | |
| cov, target, weight, reduction=reduction, avg_factor=avg_factor) | |
| return loss | |