tb-ocr / app.py
wjbmattingly's picture
Update app.py
ee83624 verified
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import requests
import gradio as gr
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model_id = "yifeihu/TB-OCR-preview-0.1"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
trust_remote_code=True,
torch_dtype="auto",
attn_implementation='flash_attention_2',
load_in_4bit=True
)
processor = AutoProcessor.from_pretrained(model_id,
trust_remote_code=True,
num_crops=16
)
def phi_ocr(image):
question = "Convert the text to markdown format."
prompt_message = [{
'role': 'user',
'content': f'<|image_1|>\n{question}',
}]
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, [image], return_tensors="pt").to("cuda")
generation_args = {
"max_new_tokens": 1024,
"temperature": 0.1,
"do_sample": False
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = response.split("<image_end>")[0]
return response
@spaces.GPU
def process_image(input_image):
return phi_ocr(input_image)
with gr.Blocks() as demo:
gr.Markdown("# OCR with TB-OCR-preview-0.1")
gr.Markdown("Upload an image to extract and convert text to markdown format.")
gr.Markdown("[Check out the model here](https://huggingface.co/yifeihu/TB-OCR-preview-0.1)")
with gr.Row():
input_image = gr.Image(type="pil")
output_text = gr.Textbox()
input_image.change(fn=process_image, inputs=input_image, outputs=output_text)
demo.launch()