tb-ocr / app.py
wjbmattingly's picture
Create app.py
ad1dec5 verified
raw
history blame
1.73 kB
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import requests
import gradio as gr
import spaces
model_id = "yifeihu/TB-OCR-preview-0.1"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
trust_remote_code=True,
torch_dtype="auto",
attn_implementation='flash_attention_2',
load_in_4bit=True
)
processor = AutoProcessor.from_pretrained(model_id,
trust_remote_code=True,
num_crops=16
)
@spaces.GPU
def phi_ocr(image):
question = "Convert the text to markdown format."
prompt_message = [{
'role': 'user',
'content': f'<|image_1|>\n{question}',
}]
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, [image], return_tensors="pt").to("cuda")
generation_args = {
"max_new_tokens": 1024,
"temperature": 0.1,
"do_sample": False
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = response.split("<image_end>")[0]
return response
def process_image(input_image):
return phi_ocr(input_image)
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="OCR with Phi-3.5-vision-instruct",
description="Upload an image to extract and convert text to markdown format."
)
iface.launch()