from fastapi import FastAPI, UploadFile from ultralytics import YOLOE import io from PIL import Image import numpy as np import os from huggingface_hub import hf_hub_download from ultralytics import YOLO import requests ### #pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/CLIP" #pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/ml-mobileclip" #pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/lvis-api" #pip install -q "git+https://github.com/THU-MIG/yoloe.git" #wget -q https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt def init_model(): is_pf=True model_id = "yoloe-11s" # Create a models directory if it doesn't exist os.makedirs("models", exist_ok=True) filename = f"{model_id}-seg.pt" if not is_pf else f"{model_id}-seg-pf.pt" path = hf_hub_download(repo_id="jameslahm/yoloe", filename=filename) local_path = os.path.join("models", path) # Download and load model model = YOLOE(local_path) model.eval() return model app = FastAPI() # Initialize model at startup model = init_model() @app.post("/predict") async def predict(image_url: str, texts: str = "hat"): # Set classes to filter class_list = [text.strip() for text in texts.split(',')] # Download and open image from URL response = requests.get(image_url) image = Image.open(io.BytesIO(response.content)) # Get text embeddings and set classes properly text_embeddings = model.get_text_pe(class_list) model.set_classes(class_list, text_embeddings) # Run inference with the PIL Image results = model.predict(source=image, conf=0.25, iou=0.7) # Extract detection results result = results[0] # print(result) detections = [] for box in result.boxes: detection = { "class": result.names[int(box.cls[0])], "confidence": float(box.conf[0]), "bbox": box.xyxy[0].tolist() # Convert bbox tensor to list } detections.append(detection) print(detections) return {"detections": detections} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)