vidhanm
trying to solve config error
16bf2d1
raw
history blame
6.84 kB
import sys
import os
# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM"
if NANOVLM_REPO_PATH not in sys.path:
sys.path.insert(0, NANOVLM_REPO_PATH)
import gradio as gr
from PIL import Image
import torch
# Import specific processor components
from transformers import CLIPImageProcessor, GPT2TokenizerFast
# Import the custom VisionLanguageModel class
try:
from models.vision_language_model import VisionLanguageModel
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
except ImportError as e:
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.")
VisionLanguageModel = None
# Determine the device to use
device_choice = os.environ.get("DEVICE", "auto")
if device_choice == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = device_choice
print(f"Using device: {device}")
# Load the model and processor components
model_id = "lusxvr/nanoVLM-222M"
image_processor = None
tokenizer = None
model = None
if VisionLanguageModel:
try:
print(f"Attempting to load specific processor components for {model_id}")
# Load the image processor
image_processor = CLIPImageProcessor.from_pretrained(model_id, trust_remote_code=True)
print("CLIPImageProcessor loaded.")
# Load the tokenizer
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, trust_remote_code=True)
# Add a padding token if it's not already there (common for GPT2)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Set tokenizer pad_token to eos_token.")
print("GPT2TokenizerFast loaded.")
print(f"Attempting to load model {model_id} using VisionLanguageModel.from_pretrained")
model = VisionLanguageModel.from_pretrained(
model_id,
trust_remote_code=True # Allows custom model code to run
# The VisionLanguageModel might need image_processor and tokenizer passed during init,
# or it might retrieve them from its config. Check its __init__ if issues persist.
# For now, assume it gets them from config or they are not strictly needed at init.
).to(device)
print("Model loaded successfully.")
model.eval()
except Exception as e:
print(f"Error loading model or processor components: {e}")
image_processor = None
tokenizer = None
model = None
else:
print("Custom VisionLanguageModel class not imported, cannot load model.")
# Define a simple processor-like function for preparing inputs
def prepare_inputs(text, image, image_processor_instance, tokenizer_instance, device_to_use):
if image_processor_instance is None or tokenizer_instance is None:
raise ValueError("Image processor or tokenizer not initialized.")
# Process image
processed_image = image_processor_instance(images=image, return_tensors="pt").pixel_values.to(device_to_use)
# Process text
# Ensure padding is handled correctly for batching (even if batch size is 1)
processed_text = tokenizer_instance(
text=text, return_tensors="pt", padding=True, truncation=True
)
input_ids = processed_text.input_ids.to(device_to_use)
attention_mask = processed_text.attention_mask.to(device_to_use)
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask}
def generate_text_for_image(image_input, prompt_input):
if model is None or image_processor is None or tokenizer is None:
return "Error: Model or processor components not loaded correctly. Check logs."
if image_input is None:
return "Please upload an image."
if not prompt_input:
return "Please provide a prompt."
try:
if not isinstance(image_input, Image.Image):
pil_image = Image.fromarray(image_input)
else:
pil_image = image_input
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
# Use our custom input preparation function
inputs = prepare_inputs(
text=[prompt_input], # Expects a list of text prompts
image=pil_image, # Expects a single PIL image or list
image_processor_instance=image_processor,
tokenizer_instance=tokenizer,
device_to_use=device
)
# Generate text using the model's generate method
generated_ids = model.generate(
pixel_values=inputs['pixel_values'],
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_new_tokens=150,
num_beams=3,
no_repeat_ngram_size=2,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id # Important for generation
)
# Decode the generated tokens
# skip_special_tokens=True removes special tokens like <|endoftext|>
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
generated_text = generated_text_list[0] if generated_text_list else ""
# Basic cleaning of the prompt if the model includes it in the output
if prompt_input and generated_text.startswith(prompt_input):
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
else:
cleaned_text = generated_text
return cleaned_text.strip()
except Exception as e:
print(f"Error during generation: {e}")
import traceback
traceback.print_exc() # Print full traceback for debugging
return f"An error occurred during text generation: {str(e)}"
description = "Interactive demo for lusxvr/nanoVLM-222M."
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
gradio_cache_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio_tmp")
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt/Question")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="Interactive nanoVLM-222M Demo",
description=description,
examples=[
[example_image_url, "a photo of a"],
[example_image_url, "Describe the image in detail."],
],
cache_examples=True,
examples_cache_folder=gradio_cache_dir,
allow_flagging="never"
)
if __name__ == "__main__":
if model is None or image_processor is None or tokenizer is None:
print("CRITICAL: Model or processor components failed to load.")
else:
print("Launching Gradio interface...")
iface.launch(server_name="0.0.0.0", server_port=7860)