Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,3 @@
|
|
1 |
-
# import os
|
2 |
-
# import gradio as gr
|
3 |
-
# import requests
|
4 |
-
# import inspect
|
5 |
-
# import pandas as pd
|
6 |
-
|
7 |
-
# # (Keep Constants as is)
|
8 |
-
# # --- Constants ---
|
9 |
-
# DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
-
|
11 |
-
# # --- Basic Agent Definition ---
|
12 |
-
# # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
# class BasicAgent:
|
14 |
-
# def __init__(self):
|
15 |
-
# print("BasicAgent initialized.")
|
16 |
-
# def __call__(self, question: str) -> str:
|
17 |
-
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
# fixed_answer = "This is a default answer."
|
19 |
-
# print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
# return fixed_answer
|
21 |
-
|
22 |
-
# def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
-
# """
|
24 |
-
# Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
-
# and displays the results.
|
26 |
-
# """
|
27 |
-
# # --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
# space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
-
|
30 |
-
# if profile:
|
31 |
-
# username= f"{profile.username}"
|
32 |
-
# print(f"User logged in: {username}")
|
33 |
-
# else:
|
34 |
-
# print("User not logged in.")
|
35 |
-
# return "Please Login to Hugging Face with the button.", None
|
36 |
-
|
37 |
-
# api_url = DEFAULT_API_URL
|
38 |
-
# questions_url = f"{api_url}/questions"
|
39 |
-
# submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# # 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
# try:
|
43 |
-
# agent = BasicAgent()
|
44 |
-
# except Exception as e:
|
45 |
-
# print(f"Error instantiating agent: {e}")
|
46 |
-
# return f"Error initializing agent: {e}", None
|
47 |
-
# # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
# agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
# print(agent_code)
|
50 |
-
|
51 |
-
# # 2. Fetch Questions
|
52 |
-
# print(f"Fetching questions from: {questions_url}")
|
53 |
-
# try:
|
54 |
-
# response = requests.get(questions_url, timeout=15)
|
55 |
-
# response.raise_for_status()
|
56 |
-
# questions_data = response.json()
|
57 |
-
# if not questions_data:
|
58 |
-
# print("Fetched questions list is empty.")
|
59 |
-
# return "Fetched questions list is empty or invalid format.", None
|
60 |
-
# print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
# except requests.exceptions.RequestException as e:
|
62 |
-
# print(f"Error fetching questions: {e}")
|
63 |
-
# return f"Error fetching questions: {e}", None
|
64 |
-
# except requests.exceptions.JSONDecodeError as e:
|
65 |
-
# print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
# print(f"Response text: {response.text[:500]}")
|
67 |
-
# return f"Error decoding server response for questions: {e}", None
|
68 |
-
# except Exception as e:
|
69 |
-
# print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
# return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# # 3. Run your Agent
|
73 |
-
# results_log = []
|
74 |
-
# answers_payload = []
|
75 |
-
# print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
# for item in questions_data:
|
77 |
-
# task_id = item.get("task_id")
|
78 |
-
# question_text = item.get("question")
|
79 |
-
# if not task_id or question_text is None:
|
80 |
-
# print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
# continue
|
82 |
-
# try:
|
83 |
-
# submitted_answer = agent(question_text)
|
84 |
-
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
# except Exception as e:
|
87 |
-
# print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
-
|
90 |
-
# if not answers_payload:
|
91 |
-
# print("Agent did not produce any answers to submit.")
|
92 |
-
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# # 4. Prepare Submission
|
95 |
-
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
# print(status_update)
|
98 |
-
|
99 |
-
# # 5. Submit
|
100 |
-
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
-
# try:
|
102 |
-
# response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
-
# response.raise_for_status()
|
104 |
-
# result_data = response.json()
|
105 |
-
# final_status = (
|
106 |
-
# f"Submission Successful!\n"
|
107 |
-
# f"User: {result_data.get('username')}\n"
|
108 |
-
# f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
# f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
# )
|
112 |
-
# print("Submission successful.")
|
113 |
-
# results_df = pd.DataFrame(results_log)
|
114 |
-
# return final_status, results_df
|
115 |
-
# except requests.exceptions.HTTPError as e:
|
116 |
-
# error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
# try:
|
118 |
-
# error_json = e.response.json()
|
119 |
-
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
# except requests.exceptions.JSONDecodeError:
|
121 |
-
# error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
# status_message = f"Submission Failed: {error_detail}"
|
123 |
-
# print(status_message)
|
124 |
-
# results_df = pd.DataFrame(results_log)
|
125 |
-
# return status_message, results_df
|
126 |
-
# except requests.exceptions.Timeout:
|
127 |
-
# status_message = "Submission Failed: The request timed out."
|
128 |
-
# print(status_message)
|
129 |
-
# results_df = pd.DataFrame(results_log)
|
130 |
-
# return status_message, results_df
|
131 |
-
# except requests.exceptions.RequestException as e:
|
132 |
-
# status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
# print(status_message)
|
134 |
-
# results_df = pd.DataFrame(results_log)
|
135 |
-
# return status_message, results_df
|
136 |
-
# except Exception as e:
|
137 |
-
# status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
# print(status_message)
|
139 |
-
# results_df = pd.DataFrame(results_log)
|
140 |
-
# return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
# # --- Build Gradio Interface using Blocks ---
|
144 |
-
# with gr.Blocks() as demo:
|
145 |
-
# gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
# gr.Markdown(
|
147 |
-
# """
|
148 |
-
# **Instructions:**
|
149 |
-
|
150 |
-
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
# ---
|
155 |
-
# **Disclaimers:**
|
156 |
-
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
# """
|
159 |
-
# )
|
160 |
-
|
161 |
-
# gr.LoginButton()
|
162 |
-
|
163 |
-
# run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# # Removed max_rows=10 from DataFrame constructor
|
167 |
-
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
# run_button.click(
|
170 |
-
# fn=run_and_submit_all,
|
171 |
-
# outputs=[status_output, results_table]
|
172 |
-
# )
|
173 |
-
|
174 |
-
# if __name__ == "__main__":
|
175 |
-
# print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# # Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
# space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
# if space_host_startup:
|
181 |
-
# print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
# else:
|
184 |
-
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
# if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
# print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
# print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
# else:
|
191 |
-
# print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
# print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
# print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
# demo.launch(debug=True, share=False)
|
197 |
-
|
198 |
-
|
199 |
import os
|
200 |
import gradio as gr
|
201 |
import requests
|
@@ -210,7 +12,9 @@ from smolagents import (
|
|
210 |
OpenAIServerModel,
|
211 |
DuckDuckGoSearchTool,
|
212 |
FinalAnswerTool,
|
213 |
-
PythonInterpreterTool
|
|
|
|
|
214 |
)
|
215 |
from huggingface_hub import login, InferenceClient
|
216 |
|
@@ -219,17 +23,6 @@ from huggingface_hub import login, InferenceClient
|
|
219 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
220 |
|
221 |
# --- Basic Agent Definition ---
|
222 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
223 |
-
from smolagents import CodeAgent, HfApiModel
|
224 |
-
import os
|
225 |
-
from smolagents import HfApiModel
|
226 |
-
|
227 |
-
class CustomModel(Model):
|
228 |
-
def generate(messages, stop_sequences=["Task"]):
|
229 |
-
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1024)
|
230 |
-
answer = response.choices[0].message
|
231 |
-
return answer
|
232 |
-
|
233 |
|
234 |
|
235 |
# --- Agent Definition ---
|
@@ -238,25 +31,24 @@ class BasicAgent:
|
|
238 |
print("Initializing BasicAgent with tools...")
|
239 |
|
240 |
# Load OpenAI token from environment
|
241 |
-
openai_token = os.getenv("
|
242 |
if not openai_token:
|
243 |
-
raise ValueError("Missing
|
244 |
|
245 |
# Initialize model and tools
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
custom_model = CustomModel(client)
|
253 |
-
|
254 |
-
|
255 |
-
model = OpenAIServerModel(
|
256 |
-
#api_base="openai",
|
257 |
-
api_key=openai_token,
|
258 |
-
model_id="gpt-4.1"
|
259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
search_tool = DuckDuckGoSearchTool()
|
261 |
final_answer_tool = FinalAnswerTool()
|
262 |
reverse_tool = ReverseTextTool()
|
@@ -271,7 +63,7 @@ class BasicAgent:
|
|
271 |
|
272 |
# Build the agent
|
273 |
self.agent = CodeAgent(
|
274 |
-
model=
|
275 |
prompt_templates=prompt_templates,
|
276 |
tools=[search_tool, reverse_tool, table_tool, veg_tool, python_tool, exfood_tool], #final_answer_tool
|
277 |
add_base_tools=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
12 |
OpenAIServerModel,
|
13 |
DuckDuckGoSearchTool,
|
14 |
FinalAnswerTool,
|
15 |
+
PythonInterpreterTool,
|
16 |
+
InferenceClientModel,
|
17 |
+
HfApiModel
|
18 |
)
|
19 |
from huggingface_hub import login, InferenceClient
|
20 |
|
|
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
|
25 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
# --- Agent Definition ---
|
|
|
31 |
print("Initializing BasicAgent with tools...")
|
32 |
|
33 |
# Load OpenAI token from environment
|
34 |
+
openai_token = os.getenv("HF_TOKEN")
|
35 |
if not openai_token:
|
36 |
+
raise ValueError("Missing API token!")
|
37 |
|
38 |
# Initialize model and tools
|
39 |
|
40 |
+
model = InferenceClientModel(
|
41 |
+
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
42 |
+
provider="together",
|
43 |
+
token=openai_token,
|
44 |
+
max_tokens=5000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
+
|
47 |
+
# model = OpenAIServerModel(
|
48 |
+
# #api_base="openai",
|
49 |
+
# api_key=openai_token,
|
50 |
+
# model_id="gpt-4.1"
|
51 |
+
# )
|
52 |
search_tool = DuckDuckGoSearchTool()
|
53 |
final_answer_tool = FinalAnswerTool()
|
54 |
reverse_tool = ReverseTextTool()
|
|
|
63 |
|
64 |
# Build the agent
|
65 |
self.agent = CodeAgent(
|
66 |
+
model=model,
|
67 |
prompt_templates=prompt_templates,
|
68 |
tools=[search_tool, reverse_tool, table_tool, veg_tool, python_tool, exfood_tool], #final_answer_tool
|
69 |
add_base_tools=True,
|