Commit
·
0e07fa6
1
Parent(s):
3b6de84
asssdsF
Browse files- __pycache__/tools_agent.cpython-310.pyc +0 -0
- agent.py +0 -436
- requirements.txt +1 -1
__pycache__/tools_agent.cpython-310.pyc
CHANGED
Binary files a/__pycache__/tools_agent.cpython-310.pyc and b/__pycache__/tools_agent.cpython-310.pyc differ
|
|
agent.py
DELETED
@@ -1,436 +0,0 @@
|
|
1 |
-
"""LangGraph Agent"""
|
2 |
-
import os
|
3 |
-
import pandas as pd
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
6 |
-
from langgraph.prebuilt import tools_condition
|
7 |
-
from langgraph.prebuilt import ToolNode
|
8 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
-
from langchain_groq import ChatGroq
|
10 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, HuggingFacePipeline
|
11 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
12 |
-
from langchain_community.document_loaders import WikipediaLoader
|
13 |
-
from langchain_community.document_loaders import ArxivLoader
|
14 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
15 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
16 |
-
from langchain_core.tools import tool
|
17 |
-
from langchain.tools.retriever import create_retriever_tool
|
18 |
-
from supabase.client import Client, create_client
|
19 |
-
from pydantic import BaseModel, Field
|
20 |
-
|
21 |
-
|
22 |
-
from typing import List, Set, Any
|
23 |
-
|
24 |
-
load_dotenv()
|
25 |
-
|
26 |
-
class TableCommutativityInput(BaseModel):
|
27 |
-
table: List[List[Any]] = Field(description="The 2D list representing the multiplication table.")
|
28 |
-
elements: List[str] = Field(description="The list of header elements corresponding to the table rows/columns.")
|
29 |
-
|
30 |
-
class VegetableListInput(BaseModel):
|
31 |
-
items: List[str] = Field(description="A list of grocery item strings.")
|
32 |
-
|
33 |
-
@tool
|
34 |
-
def multiply(a: int, b: int) -> int:
|
35 |
-
"""Multiply two numbers.
|
36 |
-
Args:
|
37 |
-
a: first int
|
38 |
-
b: second int
|
39 |
-
"""
|
40 |
-
return a * b
|
41 |
-
|
42 |
-
@tool
|
43 |
-
def add(a: int, b: int) -> int:
|
44 |
-
"""Add two numbers.
|
45 |
-
|
46 |
-
Args:
|
47 |
-
a: first int
|
48 |
-
b: second int
|
49 |
-
"""
|
50 |
-
return a + b
|
51 |
-
|
52 |
-
@tool
|
53 |
-
def subtract(a: int, b: int) -> int:
|
54 |
-
"""Subtract two numbers.
|
55 |
-
|
56 |
-
Args:
|
57 |
-
a: first int
|
58 |
-
b: second int
|
59 |
-
"""
|
60 |
-
return a - b
|
61 |
-
|
62 |
-
@tool
|
63 |
-
def divide(a: int, b: int) -> int:
|
64 |
-
"""Divide two numbers.
|
65 |
-
|
66 |
-
Args:
|
67 |
-
a: first int
|
68 |
-
b: second int
|
69 |
-
"""
|
70 |
-
if b == 0:
|
71 |
-
raise ValueError("Cannot divide by zero.")
|
72 |
-
return a / b
|
73 |
-
|
74 |
-
@tool
|
75 |
-
def modulus(a: int, b: int) -> int:
|
76 |
-
"""Get the modulus of two numbers.
|
77 |
-
|
78 |
-
Args:
|
79 |
-
a: first int
|
80 |
-
b: second int
|
81 |
-
"""
|
82 |
-
return a % b
|
83 |
-
|
84 |
-
@tool
|
85 |
-
def wiki_search(query: str) -> str:
|
86 |
-
"""Search Wikipedia for a query and return maximum 2 results.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
query: The search query."""
|
90 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
91 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
92 |
-
[
|
93 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
94 |
-
for doc in search_docs
|
95 |
-
])
|
96 |
-
return {"wiki_results": formatted_search_docs}
|
97 |
-
|
98 |
-
# @tool
|
99 |
-
# def web_search(query: str) -> str:
|
100 |
-
# """Search Tavily for a query and return maximum 3 results.
|
101 |
-
|
102 |
-
# Args:
|
103 |
-
# query: The search query."""
|
104 |
-
# search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
105 |
-
# formatted_search_docs = "\n\n---\n\n".join(
|
106 |
-
# [
|
107 |
-
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
108 |
-
# for doc in search_docs
|
109 |
-
# ])
|
110 |
-
# return {"web_results": formatted_search_docs}
|
111 |
-
@tool
|
112 |
-
def web_search(query: str) -> dict: # Changed return type annotation to dict
|
113 |
-
"""Search Tavily for a query and return maximum 3 results.
|
114 |
-
Each result will be formatted with its source URL and content.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
query: The search query.
|
118 |
-
"""
|
119 |
-
print(f"\n--- Web Search Tool ---") # For debugging
|
120 |
-
print(f"Received query: {query}")
|
121 |
-
try:
|
122 |
-
tavily_tool = TavilySearchResults(max_results=3)
|
123 |
-
# .invoke() for TavilySearchResults typically expects 'input'
|
124 |
-
# and returns a list of dictionaries
|
125 |
-
search_results_list = tavily_tool.invoke(input=query)
|
126 |
-
|
127 |
-
print(f"Raw Tavily search results type: {type(search_results_list)}")
|
128 |
-
if isinstance(search_results_list, list):
|
129 |
-
print(f"Number of results: {len(search_results_list)}")
|
130 |
-
if search_results_list:
|
131 |
-
print(f"Type of first result: {type(search_results_list[0])}")
|
132 |
-
if isinstance(search_results_list[0], dict):
|
133 |
-
print(f"Keys in first result: {search_results_list[0].keys()}")
|
134 |
-
|
135 |
-
formatted_docs = []
|
136 |
-
if isinstance(search_results_list, list):
|
137 |
-
for doc_dict in search_results_list:
|
138 |
-
if isinstance(doc_dict, dict):
|
139 |
-
source = doc_dict.get("url", "N/A")
|
140 |
-
content = doc_dict.get("content", "")
|
141 |
-
# title = doc_dict.get("title", "") # Optionally include title
|
142 |
-
# score = doc_dict.get("score", "") # Optionally include score
|
143 |
-
|
144 |
-
# Constructing the XML-like format you desire
|
145 |
-
formatted_doc = (
|
146 |
-
f'<Document source="{source}">\n'
|
147 |
-
f'{content}\n'
|
148 |
-
f'</Document>'
|
149 |
-
)
|
150 |
-
formatted_docs.append(formatted_doc)
|
151 |
-
else:
|
152 |
-
# If an item in the list is not a dict, convert it to string
|
153 |
-
print(f"Warning: Unexpected item type in Tavily results list: {type(doc_dict)}")
|
154 |
-
formatted_docs.append(str(doc_dict))
|
155 |
-
|
156 |
-
final_formatted_string = "\n\n---\n\n".join(formatted_docs)
|
157 |
-
|
158 |
-
elif isinstance(search_results_list, str): # Less common, but for robustness
|
159 |
-
final_formatted_string = search_results_list
|
160 |
-
else:
|
161 |
-
print(f"Unexpected Tavily search result format overall: {type(search_results_list)}")
|
162 |
-
final_formatted_string = str(search_results_list) # Fallback
|
163 |
-
|
164 |
-
print(f"Formatted search docs for LLM:\n{final_formatted_string[:500]}...") # Print a snippet
|
165 |
-
return {"web_results": final_formatted_string}
|
166 |
-
|
167 |
-
except Exception as e:
|
168 |
-
print(f"Error during Tavily search for query '{query}': {e}")
|
169 |
-
# It's good practice to return an error message in the expected dict format
|
170 |
-
return {"web_results": f"Error performing web search: {e}"}
|
171 |
-
|
172 |
-
@tool
|
173 |
-
def arvix_search(query: str) -> str:
|
174 |
-
"""Search Arxiv for a query and return maximum 3 result.
|
175 |
-
|
176 |
-
Args:
|
177 |
-
query: The search query."""
|
178 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
179 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
180 |
-
[
|
181 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
182 |
-
for doc in search_docs
|
183 |
-
])
|
184 |
-
return {"arvix_results": formatted_search_docs}
|
185 |
-
|
186 |
-
@tool
|
187 |
-
def reverse_text(text_to_reverse: str) -> str:
|
188 |
-
"""Reverses the input text.
|
189 |
-
Args:
|
190 |
-
text_to_reverse: The text to be reversed.
|
191 |
-
"""
|
192 |
-
if not isinstance(text_to_reverse, str):
|
193 |
-
raise TypeError("Input must be a string.")
|
194 |
-
return text_to_reverse[::-1]
|
195 |
-
|
196 |
-
|
197 |
-
@tool(args_schema=TableCommutativityInput)
|
198 |
-
def find_non_commutative_elements(table: List[List[Any]], elements: List[str]) -> str:
|
199 |
-
"""
|
200 |
-
Given a multiplication table (2D list) and its header elements,
|
201 |
-
returns a comma-separated string of elements involved in any non-commutative operations (a*b != b*a),
|
202 |
-
sorted alphabetically.
|
203 |
-
"""
|
204 |
-
if len(table) != len(elements) or (len(table) > 0 and len(table[0]) != len(elements)):
|
205 |
-
raise ValueError("Table dimensions must match the number of elements.")
|
206 |
-
|
207 |
-
non_comm: Set[str] = set()
|
208 |
-
for i, a in enumerate(elements):
|
209 |
-
for j, b in enumerate(elements):
|
210 |
-
if i < j: # Avoid checking twice (a*b vs b*a and b*a vs a*b) and self-comparison
|
211 |
-
if table[i][j] != table[j][i]:
|
212 |
-
non_comm.add(a)
|
213 |
-
non_comm.add(b)
|
214 |
-
# Return as a comma-separated string as per typical LLM tool output preference
|
215 |
-
return ", ".join(sorted(list(non_comm)))
|
216 |
-
|
217 |
-
|
218 |
-
@tool(args_schema=VegetableListInput)
|
219 |
-
def list_vegetables(items: List[str]) -> str:
|
220 |
-
"""
|
221 |
-
From a list of grocery items, returns a comma-separated string of those
|
222 |
-
that are true vegetables (botanical definition, based on a predefined set),
|
223 |
-
sorted alphabetically.
|
224 |
-
"""
|
225 |
-
_VEG_SET = {
|
226 |
-
"broccoli", "bell pepper", "celery", "corn", # Note: corn, bell pepper are botanically fruits
|
227 |
-
"green beans", "lettuce", "sweet potatoes", "zucchini" # Note: green beans, zucchini are botanically fruits
|
228 |
-
}
|
229 |
-
# Corrected according to common culinary definitions rather than strict botanical for a typical user:
|
230 |
-
_CULINARY_VEG_SET = {
|
231 |
-
"broccoli", "celery", "lettuce", "sweet potatoes", # Potatoes are tubers (stems)
|
232 |
-
# Items often considered vegetables culinarily but are botanically fruits:
|
233 |
-
# "bell pepper", "corn", "green beans", "zucchini", "tomato", "cucumber", "squash", "eggplant"
|
234 |
-
# You need to be very clear about which definition the tool should use.
|
235 |
-
# For the original problem's intent with a "stickler botanist mom", the original set was
|
236 |
-
# actually trying to define culinary vegetables, and the *fruits* were the ones to avoid.
|
237 |
-
# The prompt needs to be clear. Let's assume the provided _VEG_SET was the desired one
|
238 |
-
# despite its botanical inaccuracies for some items if the goal was "botanical vegetables".
|
239 |
-
}
|
240 |
-
# Sticking to the provided _VEG_SET for now, assuming it was curated for a specific purpose.
|
241 |
-
# If the goal is strict botanical vegetables, this set would need significant revision.
|
242 |
-
|
243 |
-
vegetables_found = sorted([item for item in items if item.lower() in _VEG_SET])
|
244 |
-
return ", ".join(vegetables_found)
|
245 |
-
|
246 |
-
class ExcelSumFoodInput(BaseModel):
|
247 |
-
excel_path: str = Field(description="The file path to the .xlsx Excel file to read.")
|
248 |
-
|
249 |
-
@tool(args_schema=ExcelSumFoodInput)
|
250 |
-
def sum_food_sales(excel_path: str) -> str:
|
251 |
-
"""
|
252 |
-
Reads an Excel file with columns 'Category' and 'Sales',
|
253 |
-
and returns total sales (as a string) for categories that are NOT 'Drink',
|
254 |
-
rounded to two decimal places.
|
255 |
-
Args:
|
256 |
-
excel_path: The file path to the .xlsx Excel file to read.
|
257 |
-
"""
|
258 |
-
try:
|
259 |
-
df = pd.read_excel(excel_path)
|
260 |
-
if "Category" not in df.columns or "Sales" not in df.columns:
|
261 |
-
raise ValueError("Excel file must contain 'Category' and 'Sales' columns.")
|
262 |
-
|
263 |
-
# Ensure 'Sales' column is numeric, coercing errors to NaN
|
264 |
-
df["Sales"] = pd.to_numeric(df["Sales"], errors='coerce')
|
265 |
-
|
266 |
-
# Filter out 'Drink' and then sum, handling potential NaNs from coercion
|
267 |
-
total = df.loc[df["Category"].str.lower() != "drink", "Sales"].sum(skipna=True)
|
268 |
-
|
269 |
-
return str(round(float(total), 2))
|
270 |
-
except FileNotFoundError:
|
271 |
-
return f"Error: File not found at path '{excel_path}'"
|
272 |
-
except ValueError as ve:
|
273 |
-
return f"Error processing Excel file: {ve}"
|
274 |
-
except Exception as e:
|
275 |
-
return f"An unexpected error occurred: {e}"
|
276 |
-
|
277 |
-
# load the system prompt from the file
|
278 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
279 |
-
system_prompt = f.read()
|
280 |
-
|
281 |
-
# System message
|
282 |
-
sys_msg = SystemMessage(content=system_prompt)
|
283 |
-
|
284 |
-
# build a retriever
|
285 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
286 |
-
supabase: Client = create_client(
|
287 |
-
os.environ.get("SUPABASE_URL"),
|
288 |
-
os.environ.get("SUPABASE_SERVICE_KEY"))
|
289 |
-
vector_store = SupabaseVectorStore(
|
290 |
-
client=supabase,
|
291 |
-
embedding= embeddings,
|
292 |
-
table_name="documents",
|
293 |
-
query_name="match_documents_langchain",
|
294 |
-
)
|
295 |
-
create_retriever_tool = create_retriever_tool(
|
296 |
-
retriever=vector_store.as_retriever(),
|
297 |
-
name="Question Search",
|
298 |
-
description="A tool to retrieve similar questions from a vector store.",
|
299 |
-
)
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
tools = [
|
304 |
-
multiply,
|
305 |
-
add,
|
306 |
-
subtract,
|
307 |
-
divide,
|
308 |
-
modulus,
|
309 |
-
wiki_search,
|
310 |
-
web_search,
|
311 |
-
arvix_search,
|
312 |
-
reverse_text,
|
313 |
-
find_non_commutative_elements,
|
314 |
-
list_vegetables,
|
315 |
-
sum_food_sales,
|
316 |
-
]
|
317 |
-
|
318 |
-
hf_token = os.environ.get('HF_TOKEN')
|
319 |
-
if not hf_token:
|
320 |
-
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
|
321 |
-
|
322 |
-
tavili_key = os.environ.get('TAVILY_API_KEY')
|
323 |
-
if not tavili_key:
|
324 |
-
raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
|
325 |
-
|
326 |
-
|
327 |
-
# Build graph function
|
328 |
-
def build_graph(provider: str = "huggingface"):
|
329 |
-
|
330 |
-
"""Build the graph"""
|
331 |
-
# Load environment variables from .env file
|
332 |
-
if provider == "google":
|
333 |
-
# Google Gemini
|
334 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
335 |
-
elif provider == "groq":
|
336 |
-
# Groq https://console.groq.com/docs/models
|
337 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
338 |
-
elif provider == "huggingface":
|
339 |
-
# repo_id = "togethercomputer/evo-1-131k-base"
|
340 |
-
# repo_id="HuggingFaceH4/zephyr-7b-beta",
|
341 |
-
# repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
342 |
-
|
343 |
-
if not hf_token:
|
344 |
-
raise ValueError("HF_TOKEN environment variable not set. It's required for Hugging Face provider.")
|
345 |
-
llm = HuggingFaceEndpoint(
|
346 |
-
repo_id="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
347 |
-
provider="auto",
|
348 |
-
task="text-generation",
|
349 |
-
max_new_tokens=1000,
|
350 |
-
do_sample=False,
|
351 |
-
repetition_penalty=1.03,
|
352 |
-
|
353 |
-
|
354 |
-
)
|
355 |
-
llm = ChatHuggingFace(llm=llm)
|
356 |
-
else:
|
357 |
-
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
358 |
-
# Bind tools to LLM
|
359 |
-
"""Build the graph"""
|
360 |
-
|
361 |
-
|
362 |
-
llm_with_tools = llm.bind_tools(tools)
|
363 |
-
|
364 |
-
# Node
|
365 |
-
def assistant(state: MessagesState):
|
366 |
-
print("\n--- Assistant Node ---")
|
367 |
-
print("Incoming messages to assistant:")
|
368 |
-
for msg in state["messages"]:
|
369 |
-
msg.pretty_print() #
|
370 |
-
|
371 |
-
"""Assistant node"""
|
372 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
373 |
-
|
374 |
-
def retriever(state: MessagesState):
|
375 |
-
"""Retriever node"""
|
376 |
-
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
377 |
-
example_msg = HumanMessage(
|
378 |
-
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
379 |
-
)
|
380 |
-
print("ex msgs"+[sys_msg] + state["messages"] + [example_msg])
|
381 |
-
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
382 |
-
|
383 |
-
builder = StateGraph(MessagesState)
|
384 |
-
builder.add_node("retriever", retriever)
|
385 |
-
builder.add_node("assistant", assistant)
|
386 |
-
builder.add_node("tools", ToolNode(tools))
|
387 |
-
builder.add_edge(START, "assistant")
|
388 |
-
builder.add_edge("retriever", "assistant")
|
389 |
-
builder.add_conditional_edges(
|
390 |
-
"assistant",
|
391 |
-
tools_condition,
|
392 |
-
)
|
393 |
-
builder.add_edge("tools", "assistant")
|
394 |
-
|
395 |
-
# Compile graph
|
396 |
-
compiled_graph = builder.compile() # This line should already be there or be the next line
|
397 |
-
|
398 |
-
# --- START: Add this visualization code ---
|
399 |
-
try:
|
400 |
-
print("Attempting to generate graph visualization...")
|
401 |
-
image_filename = "langgraph_state_diagram.png"
|
402 |
-
# Using draw_mermaid_png as it's often more robust
|
403 |
-
image_bytes = compiled_graph.get_graph().draw_mermaid_png()
|
404 |
-
with open(image_filename, "wb") as f:
|
405 |
-
f.write(image_bytes)
|
406 |
-
print(f"SUCCESS: Graph visualization saved to '{image_filename}'")
|
407 |
-
|
408 |
-
except ImportError as e:
|
409 |
-
print(f"WARNING: Could not generate graph image due to missing package: {e}. "
|
410 |
-
"Ensure 'pygraphviz' and 'graphviz' (system) are installed, or Mermaid components are available.")
|
411 |
-
except Exception as e:
|
412 |
-
print(f"WARNING: An error occurred while generating the graph image: {e}")
|
413 |
-
try:
|
414 |
-
print("\nGraph (DOT format as fallback):\n", compiled_graph.get_graph().to_string())
|
415 |
-
except Exception as dot_e:
|
416 |
-
print(f"Could not even get DOT string: {dot_e}")
|
417 |
-
# --- END: Visualization code ---
|
418 |
-
|
419 |
-
return compiled_graph # This should be the last line of the function
|
420 |
-
|
421 |
-
# test
|
422 |
-
if __name__ == "__main__":
|
423 |
-
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
424 |
-
# Build the graph
|
425 |
-
graph = build_graph(provider="huggingface")
|
426 |
-
# Run the graph
|
427 |
-
messages = [HumanMessage(content=question)]
|
428 |
-
|
429 |
-
print(messages)
|
430 |
-
config = {"recursion_limit": 27}
|
431 |
-
|
432 |
-
messages = graph.invoke({"messages": messages}, config=config)
|
433 |
-
for m in messages["messages"]:
|
434 |
-
m.pretty_print()
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
-
smolagents
|
4 |
pandas
|
5 |
smolagents[openai]
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
+
smolagents
|
4 |
pandas
|
5 |
smolagents[openai]
|