wishwakankanamg's picture
asf
0ec910b
raw
history blame
12.8 kB
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from agent import build_graph
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
# Assumes build_graph() and sys_msg are available from your agent.py
# You need to import them here.
# from your_agent_file import build_graph, sys_msg as agent_system_message
# self.graph = build_graph()
# self.system_message = agent_system_message
# Let's assume for now agent.py is structured to be imported like this:
# Option 1: if agent.py defines them globally
# from agent import build_graph, sys_msg
# self.graph = build_graph(provider="huggingface") # Or your desired provider
# self.sys_msg_for_graph = sys_msg
# Option 2: If build_graph also returns the sys_msg or if sys_msg is part of the graph object
# This depends on how you refactor agent.py for importability
# For this example, I'll assume you import them directly:
from agent import build_graph, sys_msg as agent_sys_msg # Make sure agent.py is in PYTHONPATH or same dir
self.graph = build_graph(provider="huggingface") # Specify the provider
self.agent_system_message = agent_sys_msg
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# INCORRECT INVOCATION:
# messages = [HumanMessage(content=question)] # <-- MISSING SYSTEM MESSAGE
# messages = self.graph.invoke({"messages": messages})
# CORRECTED INVOCATION:
# You MUST include the system message that was loaded in agent.py
initial_graph_messages = [self.agent_system_message, HumanMessage(content=question)]
print("Invoking graph with (system_message + human_question):")
# Optional: print the messages being sent for debugging
# for m in initial_graph_messages:
# m.pretty_print()
# print("-" * 20)
try:
graph_output = self.graph.invoke({"messages": initial_graph_messages})
except Exception as e:
# This will catch the StopIteration if it propagates from the graph
print(f"ERROR during graph.invoke: {e}")
# Depending on how your outer loop handles errors,
# you might want to return a specific error string or re-raise
# For the Hugging Face course, it expects the AGENT ERROR string.
# The run_and_submit_all function already handles this by catching exceptions from agent().
raise # Re-raise the exception to be caught by run_and_submit_all
# Parsing the answer
if graph_output and "messages" in graph_output and graph_output["messages"]:
final_ai_message = graph_output["messages"][-1] # Get the last message
# Debug: print the final AI message object
# print("Final AI Message Object from Graph:")
# final_ai_message.pretty_print()
if hasattr(final_ai_message, 'content'):
raw_answer = str(final_ai_message.content)
# Your specific parsing: "answer = messages['messages'][-1].content; return answer[14:]"
# This assumes the answer ALWAYS starts with "FINAL ANSWER: " (14 characters)
if raw_answer.upper().startswith("FINAL ANSWER: "):
answer = raw_answer[14:].strip() # Remove "FINAL ANSWER: " and leading/trailing whitespace
else:
# The LLM didn't follow the "FINAL ANSWER: " format
print(f"Warning: LLM output did not start with 'FINAL ANSWER: '. Raw output: '{raw_answer}'")
answer = raw_answer # Return the raw answer if format is not met, or handle as error
else:
answer = "Agent Error: Final message from graph has no content."
print(f"Final message object was: {final_ai_message}")
else:
answer = "Agent Error: Graph did not return expected messages structure."
print(f"Raw graph output: {graph_output}")
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)