Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,19 @@ import copy
|
|
4 |
import gradio as gr
|
5 |
import PIL.Image
|
6 |
import torch
|
7 |
-
from transformers import BitsAndBytesConfig, pipeline,
|
|
|
8 |
import re
|
9 |
import time
|
10 |
|
11 |
DESCRIPTION = "# LLaVA πͺ - THE IRON PUMPING MACHINE VISION BEAST"
|
12 |
|
13 |
model_id = "llava-hf/llava-v1.6-vicuna-7b-hf"
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
pipe = LlavaNextForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
16 |
|
17 |
def extract_response_pairs(text):
|
18 |
turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
|
@@ -24,72 +28,69 @@ def extract_response_pairs(text):
|
|
24 |
|
25 |
return conv_list
|
26 |
|
27 |
-
def add_text(history, text):
|
28 |
-
history = history + [[text, None]]
|
29 |
-
return history, text
|
30 |
-
|
31 |
-
def infer(image, prompt, temperature, length_penalty, repetition_penalty, max_length, min_length, top_p):
|
32 |
-
outputs = pipe(images=image, prompt=prompt,
|
33 |
-
generate_kwargs={"temperature": temperature,
|
34 |
-
"length_penalty": length_penalty,
|
35 |
-
"repetition_penalty": repetition_penalty,
|
36 |
-
"max_length": max_length,
|
37 |
-
"min_length": min_length,
|
38 |
-
"top_p": top_p})
|
39 |
-
inference_output = outputs[0]["generated_text"]
|
40 |
-
return inference_output
|
41 |
-
|
42 |
-
def arnold_speak(text):
|
43 |
-
# Add Arnold Schwarzenegger-style phrases and modify speech
|
44 |
-
arnold_phrases = [
|
45 |
-
"Come with me if you want to lift!",
|
46 |
-
"I'll be back... after my protein shake.",
|
47 |
-
"Hasta la vista, baby weight!",
|
48 |
-
"Get to da choppa... I mean, da squat rack!",
|
49 |
-
"You lack discipline! But don't worry, I'm here to pump you up!"
|
50 |
-
]
|
51 |
-
|
52 |
-
text = text.replace(".", "!") # More enthusiastic punctuation
|
53 |
-
text = text.replace("gym", "iron paradise")
|
54 |
-
text = text.replace("exercise", "pump iron")
|
55 |
-
text = text.replace("workout", "sculpt your physique")
|
56 |
-
|
57 |
-
# Add random Arnold phrase to the end
|
58 |
-
text += " " + arnold_phrases[torch.randint(0, len(arnold_phrases), (1,)).item()]
|
59 |
-
|
60 |
-
return text
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if text_input == "":
|
64 |
gr.Warning("Please input text")
|
65 |
|
66 |
-
if image
|
67 |
gr.Warning("Please input image or wait for image to be uploaded before clicking submit.")
|
68 |
-
|
69 |
-
chat_history = "
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
inference_result = infer(image, chat_history, temperature, length_penalty, repetition_penalty, max_length, min_length, top_p)
|
79 |
chat_val = extract_response_pairs(inference_result)
|
80 |
|
|
|
81 |
chat_state_list = copy.deepcopy(chat_val)
|
82 |
-
chat_state_list[-1][1] = ""
|
83 |
-
|
84 |
-
response = chat_val[-1][1]
|
85 |
-
if arnold_mode:
|
86 |
-
response = arnold_speak(response)
|
87 |
|
88 |
-
|
|
|
89 |
chat_state_list[-1][1] += character
|
90 |
time.sleep(0.05)
|
|
|
91 |
yield chat_state_list
|
92 |
|
|
|
93 |
css = """
|
94 |
#mkd {
|
95 |
height: 500px;
|
@@ -97,52 +98,137 @@ css = """
|
|
97 |
border: 1px solid #ccc;
|
98 |
}
|
99 |
"""
|
100 |
-
|
101 |
-
with gr.Blocks(css=css) as demo:
|
102 |
gr.Markdown(DESCRIPTION)
|
103 |
gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! β‘οΈ
|
104 |
See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
|
105 |
chatbot = gr.Chatbot(label="Chat", show_label=False)
|
106 |
gr.Markdown("Input image and text and start chatting π")
|
107 |
with gr.Row():
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
history_chat = gr.State(value=[])
|
112 |
-
arnold_mode = gr.Checkbox(label="Arnold Schwarzenegger Mode", value=False)
|
113 |
|
114 |
with gr.Accordion(label="Advanced settings", open=False):
|
115 |
-
temperature = gr.Slider(
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
chat_inputs = [image, text_input, temperature, length_penalty, repetition_penalty, max_length, min_length, top_p, history_chat, arnold_mode]
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
with gr.Row():
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
chat_event2 = text_input.submit(
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
clear_chat_button.click(lambda: ([], []), inputs=None, outputs=[chatbot, history_chat], queue=False, api_name="clear")
|
138 |
-
image.change(lambda: ([], []), inputs=None, outputs=[chatbot, history_chat], queue=False)
|
139 |
-
cancel_btn.click(None, [], [], cancels=[chat_event1, chat_event2])
|
140 |
|
141 |
-
|
142 |
-
["./examples/baklava.png", "How to make this pastry?"],
|
143 |
-
["./examples/bee.png", "Describe this image."]
|
144 |
-
]
|
145 |
-
gr.Examples(examples=examples, inputs=[image, text_input])
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
4 |
import gradio as gr
|
5 |
import PIL.Image
|
6 |
import torch
|
7 |
+
from transformers import BitsAndBytesConfig, pipeline,LlavaNextProcessor, LlavaNextForConditionalGeneration
|
8 |
+
import torch
|
9 |
import re
|
10 |
import time
|
11 |
|
12 |
DESCRIPTION = "# LLaVA πͺ - THE IRON PUMPING MACHINE VISION BEAST"
|
13 |
|
14 |
model_id = "llava-hf/llava-v1.6-vicuna-7b-hf"
|
15 |
+
|
16 |
+
|
17 |
+
pipe = LlavaNextForConditionalGeneration.from_pretrained(model_id , torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
18 |
+
|
19 |
|
|
|
20 |
|
21 |
def extract_response_pairs(text):
|
22 |
turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
|
|
|
28 |
|
29 |
return conv_list
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
|
33 |
+
def add_text(history, text):
|
34 |
+
history = history.append([text, None])
|
35 |
+
return history, text
|
36 |
+
|
37 |
+
def infer(image, prompt,
|
38 |
+
temperature,
|
39 |
+
length_penalty,
|
40 |
+
repetition_penalty,
|
41 |
+
max_length,
|
42 |
+
min_length,
|
43 |
+
top_p):
|
44 |
+
|
45 |
+
outputs = pipe(images=image, prompt=prompt,
|
46 |
+
generate_kwargs={"temperature":temperature,
|
47 |
+
"length_penalty":length_penalty,
|
48 |
+
"repetition_penalty":repetition_penalty,
|
49 |
+
"max_length":max_length,
|
50 |
+
"min_length":min_length,
|
51 |
+
"top_p":top_p})
|
52 |
+
inference_output = outputs[0]["generated_text"]
|
53 |
+
return inference_output
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def bot(history_chat, text_input, image,
|
58 |
+
temperature,
|
59 |
+
length_penalty,
|
60 |
+
repetition_penalty,
|
61 |
+
max_length,
|
62 |
+
min_length,
|
63 |
+
top_p):
|
64 |
+
|
65 |
if text_input == "":
|
66 |
gr.Warning("Please input text")
|
67 |
|
68 |
+
if image==None:
|
69 |
gr.Warning("Please input image or wait for image to be uploaded before clicking submit.")
|
70 |
+
chat_history = " ".join(history_chat) # history as a str to be passed to model
|
71 |
+
chat_history = "you are a bodybuilding coach,and you sounds like arnold schwarzenegger, give advice on my gains, training and inspire me at the end"+chat_history + f"USER: <image>\n{text_input}\nASSISTANT:" # add text input for prompting
|
72 |
+
inference_result = infer(image, chat_history,
|
73 |
+
temperature,
|
74 |
+
length_penalty,
|
75 |
+
repetition_penalty,
|
76 |
+
max_length,
|
77 |
+
min_length,
|
78 |
+
top_p)
|
79 |
+
# return inference and parse for new history
|
|
|
80 |
chat_val = extract_response_pairs(inference_result)
|
81 |
|
82 |
+
# create history list for yielding the last inference response
|
83 |
chat_state_list = copy.deepcopy(chat_val)
|
84 |
+
chat_state_list[-1][1] = "" # empty last response
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# add characters iteratively
|
87 |
+
for character in chat_val[-1][1]:
|
88 |
chat_state_list[-1][1] += character
|
89 |
time.sleep(0.05)
|
90 |
+
# yield history but with last response being streamed
|
91 |
yield chat_state_list
|
92 |
|
93 |
+
|
94 |
css = """
|
95 |
#mkd {
|
96 |
height: 500px;
|
|
|
98 |
border: 1px solid #ccc;
|
99 |
}
|
100 |
"""
|
101 |
+
with gr.Blocks(css="style.css") as demo:
|
|
|
102 |
gr.Markdown(DESCRIPTION)
|
103 |
gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! β‘οΈ
|
104 |
See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
|
105 |
chatbot = gr.Chatbot(label="Chat", show_label=False)
|
106 |
gr.Markdown("Input image and text and start chatting π")
|
107 |
with gr.Row():
|
108 |
+
|
109 |
+
image = gr.Image(type="pil")
|
110 |
+
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
|
111 |
|
112 |
history_chat = gr.State(value=[])
|
|
|
113 |
|
114 |
with gr.Accordion(label="Advanced settings", open=False):
|
115 |
+
temperature = gr.Slider(
|
116 |
+
label="Temperature",
|
117 |
+
info="Used with nucleus sampling.",
|
118 |
+
minimum=0.5,
|
119 |
+
maximum=1.0,
|
120 |
+
step=0.1,
|
121 |
+
value=1.0,
|
122 |
+
)
|
123 |
+
length_penalty = gr.Slider(
|
124 |
+
label="Length Penalty",
|
125 |
+
info="Set to larger for longer sequence, used with beam search.",
|
126 |
+
minimum=-1.0,
|
127 |
+
maximum=2.0,
|
128 |
+
step=0.2,
|
129 |
+
value=1.0,
|
130 |
+
)
|
131 |
+
repetition_penalty = gr.Slider(
|
132 |
+
label="Repetition Penalty",
|
133 |
+
info="Larger value prevents repetition.",
|
134 |
+
minimum=1.0,
|
135 |
+
maximum=5.0,
|
136 |
+
step=0.5,
|
137 |
+
value=1.5,
|
138 |
+
)
|
139 |
+
max_length = gr.Slider(
|
140 |
+
label="Max Length",
|
141 |
+
minimum=1,
|
142 |
+
maximum=500,
|
143 |
+
step=1,
|
144 |
+
value=200,
|
145 |
+
)
|
146 |
+
min_length = gr.Slider(
|
147 |
+
label="Minimum Length",
|
148 |
+
minimum=1,
|
149 |
+
maximum=100,
|
150 |
+
step=1,
|
151 |
+
value=1,
|
152 |
+
)
|
153 |
+
top_p = gr.Slider(
|
154 |
+
label="Top P",
|
155 |
+
info="Used with nucleus sampling.",
|
156 |
+
minimum=0.5,
|
157 |
+
maximum=1.0,
|
158 |
+
step=0.1,
|
159 |
+
value=0.9,
|
160 |
+
)
|
161 |
+
chat_output = [
|
162 |
+
chatbot,
|
163 |
+
history_chat
|
164 |
+
]
|
165 |
|
|
|
166 |
|
167 |
+
chat_inputs = [
|
168 |
+
image,
|
169 |
+
text_input,
|
170 |
+
temperature,
|
171 |
+
length_penalty,
|
172 |
+
repetition_penalty,
|
173 |
+
max_length,
|
174 |
+
min_length,
|
175 |
+
top_p,
|
176 |
+
history_chat
|
177 |
+
]
|
178 |
with gr.Row():
|
179 |
+
clear_chat_button = gr.Button("Clear")
|
180 |
+
cancel_btn = gr.Button("Stop Generation")
|
181 |
+
chat_button = gr.Button("Submit", variant="primary")
|
182 |
|
183 |
+
chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(bot, [chatbot, text_input,
|
184 |
+
image, temperature,
|
185 |
+
length_penalty,
|
186 |
+
repetition_penalty,
|
187 |
+
max_length,
|
188 |
+
min_length,
|
189 |
+
top_p], chatbot)
|
190 |
|
191 |
+
chat_event2 = text_input.submit(
|
192 |
+
add_text,
|
193 |
+
[chatbot, text_input],
|
194 |
+
[chatbot, text_input]
|
195 |
+
).then(
|
196 |
+
fn=bot,
|
197 |
+
inputs=[chatbot, text_input, image, temperature,
|
198 |
+
length_penalty,
|
199 |
+
repetition_penalty,
|
200 |
+
max_length,
|
201 |
+
min_length,
|
202 |
+
top_p],
|
203 |
+
outputs=chatbot
|
204 |
+
)
|
205 |
+
clear_chat_button.click(
|
206 |
+
fn=lambda: ([], []),
|
207 |
+
inputs=None,
|
208 |
+
outputs=[
|
209 |
+
chatbot,
|
210 |
+
history_chat
|
211 |
+
],
|
212 |
+
queue=False,
|
213 |
+
api_name="clear",
|
214 |
)
|
215 |
+
image.change(
|
216 |
+
fn=lambda: ([], []),
|
217 |
+
inputs=None,
|
218 |
+
outputs=[
|
219 |
+
chatbot,
|
220 |
+
history_chat
|
221 |
+
],
|
222 |
+
queue=False)
|
223 |
+
cancel_btn.click(
|
224 |
+
None, [], [],
|
225 |
+
cancels=[chat_event1, chat_event2]
|
226 |
+
)
|
227 |
+
examples = [["./examples/baklava.png", "How to make this pastry?"],["./examples/bee.png","Describe this image."]]
|
228 |
+
gr.Examples(examples=examples, inputs=[image, text_input, chat_inputs])
|
229 |
|
|
|
|
|
|
|
230 |
|
231 |
+
|
|
|
|
|
|
|
|
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
demo.queue(max_size=10).launch(debug=True)
|