Spaces:
Running
on
Zero
Running
on
Zero
root
commited on
Commit
·
4e212b7
1
Parent(s):
feeedf2
update
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ import random
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
import gc
|
9 |
-
import tempfile
|
10 |
-
import imageio
|
11 |
from diffusers import AutoencoderKLWan
|
12 |
from wan_pipeline import WanPipeline
|
13 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
@@ -18,7 +16,6 @@ from huggingface_hub import login
|
|
18 |
# Authenticate with HF
|
19 |
login(token=os.getenv('HF_TOKEN'))
|
20 |
|
21 |
-
# Set seed
|
22 |
def set_seed(seed):
|
23 |
random.seed(seed)
|
24 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
@@ -26,7 +23,6 @@ def set_seed(seed):
|
|
26 |
torch.manual_seed(seed)
|
27 |
torch.cuda.manual_seed(seed)
|
28 |
|
29 |
-
# Model paths
|
30 |
model_paths = {
|
31 |
"sd3": "stabilityai/stable-diffusion-3-medium-diffusers",
|
32 |
"sd3.5": "stabilityai/stable-diffusion-3.5-large",
|
@@ -55,7 +51,10 @@ def load_model(model_name):
|
|
55 |
return current_model.to("cuda")
|
56 |
|
57 |
@spaces.GPU(duration=500)
|
58 |
-
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50,
|
|
|
|
|
|
|
59 |
model = load_model(model_name)
|
60 |
if seed is None:
|
61 |
seed = random.randint(0, 2**32 - 1)
|
@@ -82,8 +81,6 @@ def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps
|
|
82 |
|
83 |
return None, None, video1_path, seed
|
84 |
|
85 |
-
print("prompt:", prompt)
|
86 |
-
|
87 |
if compare_mode:
|
88 |
set_seed(seed)
|
89 |
image1 = model(
|
@@ -121,7 +118,7 @@ def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps
|
|
121 |
else:
|
122 |
return None, image, None, seed
|
123 |
|
124 |
-
# Gradio UI
|
125 |
with gr.Blocks() as demo:
|
126 |
gr.HTML("""
|
127 |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
@@ -134,31 +131,24 @@ with gr.Blocks() as demo:
|
|
134 |
""")
|
135 |
|
136 |
with gr.Row():
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
out1 = gr.Image(type="pil", label="CFG-Zero* Image")
|
155 |
-
out2 = gr.Image(type="pil", label="CFG Image")
|
156 |
-
video = gr.Video(label="Video")
|
157 |
-
used_seed = gr.Textbox(label="Used Seed")
|
158 |
-
|
159 |
-
generate_btn = gr.Button("Generate")
|
160 |
|
161 |
-
# Change logic for when "wan-t2v" is selected
|
162 |
def update_params(model_name):
|
163 |
if model_name == "wan-t2v":
|
164 |
return (
|
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
import gc
|
|
|
|
|
9 |
from diffusers import AutoencoderKLWan
|
10 |
from wan_pipeline import WanPipeline
|
11 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
|
|
16 |
# Authenticate with HF
|
17 |
login(token=os.getenv('HF_TOKEN'))
|
18 |
|
|
|
19 |
def set_seed(seed):
|
20 |
random.seed(seed)
|
21 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
|
|
23 |
torch.manual_seed(seed)
|
24 |
torch.cuda.manual_seed(seed)
|
25 |
|
|
|
26 |
model_paths = {
|
27 |
"sd3": "stabilityai/stable-diffusion-3-medium-diffusers",
|
28 |
"sd3.5": "stabilityai/stable-diffusion-3.5-large",
|
|
|
51 |
return current_model.to("cuda")
|
52 |
|
53 |
@spaces.GPU(duration=500)
|
54 |
+
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50,
|
55 |
+
use_cfg_zero_star=True, use_zero_init=True, zero_steps=0,
|
56 |
+
seed=None, compare_mode=False):
|
57 |
+
|
58 |
model = load_model(model_name)
|
59 |
if seed is None:
|
60 |
seed = random.randint(0, 2**32 - 1)
|
|
|
81 |
|
82 |
return None, None, video1_path, seed
|
83 |
|
|
|
|
|
84 |
if compare_mode:
|
85 |
set_seed(seed)
|
86 |
image1 = model(
|
|
|
118 |
else:
|
119 |
return None, image, None, seed
|
120 |
|
121 |
+
# Gradio UI with left-right layout
|
122 |
with gr.Blocks() as demo:
|
123 |
gr.HTML("""
|
124 |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
|
|
131 |
""")
|
132 |
|
133 |
with gr.Row():
|
134 |
+
with gr.Column(scale=1):
|
135 |
+
prompt = gr.Textbox(value="A spooky haunted mansion on a hill silhouetted by a full moon.", label="Enter your prompt")
|
136 |
+
model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model")
|
137 |
+
guidance_scale = gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale")
|
138 |
+
inference_steps = gr.Slider(10, 100, value=28, step=5, label="Inference Steps")
|
139 |
+
use_opt_scale = gr.Checkbox(value=True, label="Use Optimized-Scale")
|
140 |
+
use_zero_init = gr.Checkbox(value=True, label="Use Zero Init")
|
141 |
+
zero_steps = gr.Slider(0, 20, value=0, step=1, label="Zero out steps")
|
142 |
+
seed = gr.Number(value=42, label="Seed (Leave blank for random)")
|
143 |
+
compare_mode = gr.Checkbox(value=True, label="Compare Mode")
|
144 |
+
generate_btn = gr.Button("Generate")
|
145 |
+
|
146 |
+
with gr.Column(scale=2):
|
147 |
+
out1 = gr.Image(type="pil", label="CFG-Zero* Image")
|
148 |
+
out2 = gr.Image(type="pil", label="CFG Image")
|
149 |
+
video = gr.Video(label="Video")
|
150 |
+
used_seed = gr.Textbox(label="Used Seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
152 |
def update_params(model_name):
|
153 |
if model_name == "wan-t2v":
|
154 |
return (
|