File size: 5,923 Bytes
9286cfe
b453b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
9286cfe
b453b6a
8d862e5
 
 
 
b453b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9587e73
b453b6a
9bdc30c
b453b6a
 
 
 
7f96c09
 
b453b6a
cae415f
b453b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9587e73
b453b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244ce5
eef3e68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import spaces
import gradio as gr
from sd3_pipeline import StableDiffusion3Pipeline
import torch
import random
import numpy as np
import os
import gc
import tempfile
import imageio
from diffusers import AutoencoderKLWan
from wan_pipeline import WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from PIL import Image
from diffusers.utils import export_to_video


from huggingface_hub import login
login(token=os.getenv('HF_TOKEN'))


def set_seed(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

# Model paths
model_paths = {
    "sd3.5": "stabilityai/stable-diffusion-3.5-large",
    "sd3": "stabilityai/stable-diffusion-3-medium-diffusers",
    "wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
}

# Global variable for current model
current_model = None

# Folder to save video outputs
OUTPUT_DIR = "generated_videos"
os.makedirs(OUTPUT_DIR, exist_ok=True)

def load_model(model_name):
    global current_model
    if current_model is not None:
        del current_model  # Delete the old model
        torch.cuda.empty_cache()  # Free GPU memory
        gc.collect()  # Force garbage collection
    
    if "wan-t2v" in model_name:
        vae = AutoencoderKLWan.from_pretrained(model_paths[model_name], subfolder="vae", torch_dtype=torch.bfloat16)
        scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=8.0)
        current_model = WanPipeline.from_pretrained(model_paths[model_name], vae=vae, torch_dtype=torch.float16).to("cuda")
        current_model.scheduler = scheduler
    else:
        current_model = StableDiffusion3Pipeline.from_pretrained(model_paths[model_name], torch_dtype=torch.bfloat16).to("cuda")
    
    return current_model.to('cuda')


@spaces.GPU(duration=120)
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50, use_cfg_zero_star=True, use_zero_init=True, zero_steps=0, seed=None, compare_mode=False):
    model = load_model(model_name)
    if seed is None:
        seed = random.randint(0, 2**32 - 1)
    set_seed(seed)

    is_video_model = "wan-t2v" in model_name

    if is_video_model:
        if compare_mode:
            set_seed(seed)
            video1_frames = model(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_frames=81,
                use_cfg_zero_star=True,
                use_zero_init=use_zero_init,
                zero_steps=zero_steps
            ).frames[0]
            video1_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG-Zero-Star.mp4")
            export_to_video(video1_frames, video1_path, fps=16)

            set_seed(seed)
            video2_frames = model(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_frames=81,
                use_cfg_zero_star=False,
                use_zero_init=use_zero_init,
                zero_steps=zero_steps
            ).frames[0]
            video2_path = os.path.join(OUTPUT_DIR,  f"{seed}_CFG.mp4")
            export_to_video(video2_frames, video2_path, fps=16)

            return None, None, video1_path, video2_path, seed
        else:
            video_frames = model(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_frames=81,
                use_cfg_zero_star=use_cfg_zero_star,
                use_zero_init=use_zero_init,
                zero_steps=zero_steps
            ).frames[0]
            video_path = save_video(video_frames, f"{seed}.mp4")
            return None, None, video_path, None, seed

    if compare_mode:
        set_seed(seed)
        image1 = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=True,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]

        set_seed(seed)
        image2 = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=False,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]

        return image1, image2, None, None, seed
    else:
        image = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=use_cfg_zero_star,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]
        if use_cfg_zero_star:
            return image, None, None, None, seed
        else:
            return None, image, None, None, seed

# Gradio UI
demo = gr.Interface(
    fn=generate_content,
    inputs=[
        gr.Textbox(value="A cosmic whale swimming throught a glaxy with stars and swirling cosmic dusts.", label="Enter your prompt"),
        gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model"),
        gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale"),
        gr.Slider(10, 100, value=28, step=5, label="Inference Steps"),
        gr.Checkbox(value=True, label="Use CFG Zero Star"),
        gr.Checkbox(value=True, label="Use Zero Init"),
        gr.Slider(0, 20, value=0, step=1, label="Zero out steps"),
        gr.Number(value=42, label="Seed (Leave blank for random)"),
        gr.Checkbox(value=True, label="Compare Mode")
    ],
    outputs=[
        gr.Image(type="pil", label="CFG-Zero* Image"),
        gr.Image(type="pil", label="CFG Image"),
        gr.Video(label="CFG-Zero* Video"),
        gr.Video(label="CFG Video"),
        gr.Textbox(label="Used Seed")
    ],
    title="CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models",
)

demo.launch(ssr_mode=False)