Spaces:
Runtime error
Runtime error
import subprocess | |
import os | |
import sys | |
import shutil | |
from pathlib import Path | |
import argparse | |
import gradio as gr | |
from STT.sst import speech_to_text | |
from LLM.llm import generate_reply | |
from TTS_X.tts import generate_voice | |
from FantasyTalking.infer import load_models, main | |
# downloading of models if didn't exist | |
if not os.path.exists("./models/fantasytalking_model.ckpt"): | |
subprocess.run(["python", "download_models.py"]) | |
sys.path.append(os.path.abspath(".")) | |
args_template = argparse.Namespace( | |
fantasytalking_model_path="./models/fantasytalking_model.ckpt", | |
wav2vec_model_dir="./models/wav2vec2-base-960h", | |
wan_model_dir="./models/Wan2.1-I2V-14B-720P", | |
image_path="", | |
audio_path="", | |
prompt="", | |
output_dir="./output", | |
image_size=512, | |
audio_scale=1.0, | |
prompt_cfg_scale=5.0, | |
audio_cfg_scale=5.0, | |
max_num_frames=81, | |
inference_steps=20, | |
fps=23, | |
num_persistent_param_in_dit=None, | |
seed=1111 | |
) | |
pipe, fantasytalking, wav2vec_processor, wav2vec = load_models(args_template) | |
print("✅") | |
def generate_video(image_path, audio_path, prompt, output_dir="./output"): | |
args_dict = vars(args_template).copy() | |
args_dict.update({ | |
"image_path": image_path, | |
"audio_path": audio_path, | |
"prompt": prompt, | |
"output_dir": output_dir | |
}) | |
args = argparse.Namespace(**args_dict) | |
return main(args, pipe, fantasytalking, wav2vec_processor, wav2vec) | |
def full_pipeline(user_audio, user_image): | |
Path("./output").mkdir(parents=True, exist_ok=True) | |
video_path = generate_video( | |
image_path=user_image, | |
audio_path=user_audio, | |
prompt="..." # تقدر تتركه فاضي أو تكتب أي شيء بسيط | |
) | |
return "", "", user_audio, video_path | |
with gr.Blocks() as demo: | |
gr.Markdown("## Realtime Interactive Avatar 🎭") | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(label="Upload Voice", type="filepath") | |
image_input = gr.Image(label="Upload Image", type="filepath") | |
btn = gr.Button("Generate") | |
with gr.Column(): | |
user_text = gr.Textbox(label="Transcribed Text (Speech to Text)") | |
reply_text = gr.Textbox(label="Assistant Response (LLM)") | |
reply_audio = gr.Audio(label="Spoken Response (Text to Speech)") | |
video_output = gr.Video(label="Final Generated Video") | |
btn.click(fn=full_pipeline, | |
inputs=[audio_input, image_input], | |
outputs=[user_text, reply_text, reply_audio, video_output]) | |
demo.launch(inbrowser=True, share=True) | |