Spaces:
Paused
Paused
File size: 12,080 Bytes
9a748ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import requests
import json
import time
import random
import base64
import uuid
import threading
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import torch
import logging
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return encoded.decode('utf-8')
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_video(
context_scale,
enable_safety_checker,
flow_shift,
guidance_scale,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("每小时限制20次请求")
yield "❌ 请求过于频繁,请稍后再试", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
error_img = create_error_image("API密钥缺失")
yield "❌ Error: Missing API Key", error_img
return
try:
if not images or len(images) < 2:
raise ValueError("需要上传至少两张图片")
base64_images = []
for img_path in images[:2]:
base64_img = image_to_base64(img_path)
base64_images.append(base64_img)
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 文件处理失败: {str(e)}", error_img
return
video_payload = ""
if video is not None:
if isinstance(video, (list, tuple)):
video_payload = video[0] if video else ""
else:
video_payload = video
payload = {
"context_scale": context_scale,
"enable_fast_mode": False,
"enable_safety_checker": enable_safety_checker,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"images": base64_images,
"negative_prompt": negative_prompt,
"num_inference_steps": num_inference_steps,
"prompt": prompt,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": size,
"task": task,
"video": str(video_payload) if video_payload else "",
}
logging.debug(f"API请求payload: {json.dumps(payload, indent=2)}")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1-14b-vace",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ API错误 ({response.status_code}): {response.text}", error_img
return
request_id = response.json()["data"]["id"]
yield f"✅ 任务已提交 (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 连接错误: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(0.5)
try:
response = requests.get(result_url, headers=headers)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
session["history"].append(video_url)
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
f"下载链接: {video_url}"), video_url
return
elif status == "failed":
error_img = create_error_image(data.get('error', '未知错误'))
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
return
else:
yield f"⏳ 状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 轮询失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊Wan-2.1-14B-Vace Run On [WaveSpeedAI](https://wavespeed.ai/)")
gr.Markdown("""VACE is an all-in-one model designed for video creation and editing. It encompasses various tasks, including reference-to-video generation (R2V), video-to-video editing (V2V), and masked video-to-video editing (MV2V), allowing users to compose these tasks freely. This functionality enables users to explore diverse possibilities and streamlines their workflows effectively, offering a range of capabilities, such as Move-Anything, Swap-Anything, Reference-Anything, Expand-Anything, Animate-Anything, and more.""")
with gr.Row():
with gr.Column(scale=1):
images = gr.File(label="upload image", file_count="multiple", file_types=["image"], type="filepath", elem_id="image-uploader")
video = gr.Video(label="Input Video", format="mp4", sources=["upload"])
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt...")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
context_scale = gr.Slider(0, 2, value=1, step=0.1, label="Context Scale")
num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Inference Steps")
task = gr.Dropdown(["depth", "pose"], value="depth", label="Task")
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance_Scale")
flow_shift = gr.Slider(1, 20, value=16, step=1, label="Shift")
enable_safety_checker = gr.Checkbox(True, label="Enable Safety Checker", interactive=True)
with gr.Column(scale=1):
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
generate_btn = gr.Button("Generate", variant="primary")
status_output = gr.Textbox(label="status", interactive=False, lines=4)
gr.Examples(
examples=[
[
"The elegant lady carefully selects bags in the boutique, and she shows the charm of a mature woman in a black slim dress with a pearl necklace, as well as her pretty face. Holding a vintage-inspired blue leather half-moon handbag, she is carefully observing its craftsmanship and texture. The interior of the store is a haven of sophistication and luxury. Soft, ambient lighting casts a warm glow over the polished wooden floors",
[
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413751234102420_md9ywspl.png",
"https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413586520964413_7bkgc9ol.png"
]
]
],
inputs=[prompt, images],
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
context_scale,
enable_safety_checker,
flow_shift,
guidance,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
],
outputs=[status_output, video_output]
)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("gradio_app.log"),
logging.StreamHandler()
]
)
gradio_logger = logging.getLogger("gradio")
gradio_logger.setLevel(logging.INFO)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=4).launch(
server_name="0.0.0.0",
max_threads=16,
share=False
) |