jiandan1998 commited on
Commit
e2f8807
·
verified ·
1 Parent(s): 3ed743d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +155 -207
app.py CHANGED
@@ -11,231 +11,179 @@ import base64
11
  from dotenv import load_dotenv
12
  import gradio as gr
13
  import random
 
 
 
14
 
 
15
  load_dotenv()
16
 
17
- def image_to_base64(file_path):
18
- try:
19
- with open(file_path, "rb") as image_file:
20
- # 处理特殊MIME类型
21
- ext = Path(file_path).suffix.lower().lstrip('.')
22
- mime_map = {
23
- 'jpg': 'jpeg',
24
- 'jpeg': 'jpeg',
25
- 'png': 'png',
26
- 'webp': 'webp',
27
- 'gif': 'gif'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  }
29
- mime_type = mime_map.get(ext, 'jpeg')
30
-
31
- # 读取并编码
32
- raw_data = image_file.read()
33
- encoded = base64.b64encode(raw_data)
34
- missing_padding = len(encoded) % 4
35
- if missing_padding:
36
- encoded += b'=' * (4 - missing_padding)
37
-
38
- return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}"
39
-
40
- except Exception as e:
41
- raise ValueError(f"Base64编码失败: {str(e)}")
42
-
43
- def generate_random_seed():
44
- return random.randint(0, 999999)
45
-
46
- def generate_video(
47
- image,
48
- prompt,
49
- duration,
50
- enable_safety,
51
- flow_shift,
52
- guidance_scale,
53
- negative_prompt,
54
- inference_steps,
55
- seed,
56
- size
57
- ):
58
- API_KEY = os.getenv("WAVESPEED_API_KEY")
59
- if not API_KEY:
60
- yield "❌ Error: Missing API Key", None
61
- return
62
-
63
  try:
64
- base64_image = image_to_base64(image)
65
- except Exception as e:
66
- yield f"❌ File upload failed: {str(e)}", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  return
68
 
69
- payload = {
70
- "duration": duration,
71
- "enable_safety_checker": enable_safety,
72
- "flow_shift": flow_shift,
73
- "guidance_scale": guidance_scale,
74
- "image": base64_image,
75
- "negative_prompt": negative_prompt,
76
- "num_inference_steps": inference_steps,
77
- "prompt": prompt,
78
- "seed": seed,
79
- "size": size
80
- }
81
-
82
- headers = {
83
- "Content-Type": "application/json",
84
- "Authorization": f"Bearer {API_KEY}",
85
- }
86
 
 
87
  try:
88
- response = requests.post(
89
- "https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast",
90
- headers=headers,
91
- data=json.dumps(payload)
92
- )
93
 
94
- if response.status_code != 200:
95
- yield f"❌ API Error ({response.status_code}): {response.text}", None
96
- return
 
97
 
98
- request_id = response.json()["data"]["id"]
99
- yield f"✅ Task submitted (ID: {request_id})", None
100
- except Exception as e:
101
- yield f"❌ Connection Error: {str(e)}", None
102
- return
103
-
104
- # 轮询结果
105
- result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
106
- start_time = time.time()
107
- video_url = None
108
-
109
- while True:
110
- time.sleep(1)
111
- try:
112
- response = requests.get(result_url, headers={"Authorization": f"Bearer {API_KEY}"})
113
- if response.status_code != 200:
114
- yield f"❌ Polling Error ({response.status_code}): {response.text}", None
115
  return
116
 
117
- data = response.json()["data"]
118
- status = data["status"]
 
 
 
 
 
 
 
 
119
 
120
- if status == "completed":
121
- elapsed = time.time() - start_time
122
- video_url = data['outputs'][0]
123
- yield (f"🎉 Completed in {elapsed:.1f}s!\n"
124
- f"Download URL: {video_url}"), video_url
125
- return
126
-
127
- elif status == "failed":
128
- yield f"❌ Failed: {data.get('error', 'Unknown error')}", None
129
- return
130
-
131
- else:
132
- yield f"⏳ Status: {status.capitalize()}...", None
133
-
134
- except Exception as e:
135
- yield f"❌ Polling Failed: {str(e)}", None
136
- return
137
-
138
- # Gradio UI
139
- with gr.Blocks(
140
- theme=gr.themes.Soft(),
141
- css="""
142
- .video-preview {
143
- max-width: 600px !important
144
- }
145
- .example-preview {
146
- border: 1px solid #e0e0e0;
147
- border-radius: 8px;
148
- padding: 10px;
149
- margin: 5px;
150
- }
151
- .example-preview img {
152
- max-width: 200px;
153
- max-height: 150px;
154
- }
155
- """
156
- ) as app:
157
-
158
- session_id = gr.State(None)
159
-
160
- gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI")
161
-
162
- gr.Markdown("""
163
- [WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation.
164
- Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.
165
- """)
166
- gr.Markdown("""
167
- The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity.
168
- """)
169
 
170
- with gr.Row():
171
- # 右侧控制面板
172
- with gr.Column(scale=1):
173
- with gr.Row():
174
- with gr.Column(scale=1):
175
- img_input = gr.Image(type="filepath", label="Upload Image")
176
- prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Describe your scene...")
177
- negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
178
- size = gr.Dropdown(["832*480"], value="832*480", label="Resolution")
179
- steps = gr.Slider(1, 50, value=30, step=1, label="Inference Steps")
180
- duration = gr.Slider(0, 10, value=5, step=5, label="Duration (seconds)")
181
- guidance = gr.Slider(1, 30, value=5, step=0.1, label="Guidance Scale")
182
- seed = gr.Number(-1, label="Seed")
183
- random_seed_btn = gr.Button("🎲random seed", variant="secondary")
184
- flow_shift = gr.Number(3, label="Flow Shift",interactive=False)
185
- enable_safety = gr.Checkbox(True, label="Safety Checker",interactive=False)
186
- # 左侧视频展示区域
187
- with gr.Column(scale=1):
188
- video_output = gr.Video(label="Generated Video",format="mp4",interactive=False,elem_classes=["video-preview"]
189
- )
190
- generate_btn = gr.Button("Generate Video", variant="primary")
191
- output = gr.Textbox(label="Status", interactive=False, lines=4)
192
- gr.Examples(
193
- examples=[
194
- [
195
- "Victorian era, 19th-century gentleman wearing a black top hat and tuxedo, standing on a cobblestone street, dim gaslight lamps, passersby in vintage clothing, gentle breeze moving his coat, slow cinematic pan around him, nostalgic retro film style, realistic textures",
196
- "https://d2g64w682n9w0w.cloudfront.net/media/images/1745725874603980753_95mFCAxu.jpg"
197
- ],
198
- [
199
- "A cyberpunk female warrior with short silver hair and glowing green eyes, wearing a futuristic armored suit, standing in a neon-lit rainy city street, camera slowly circling around her, raindrops falling in slow motion, neon reflections on wet pavement, cinematic atmosphere, highly detailed, ultra realistic, 4K",
200
- "https://d2g64w682n9w0w.cloudfront.net/media/images/1745726299175719855_pFO0WSRM.jpg"
201
- ],
202
- [
203
- "Wide shot of a brave medieval female knight in shining silver armor and a red cape, standing on a castle rooftop at sunset, slowly drawing a large ornate sword from its scabbard, seen from a distance with the vast castle and surrounding landscape in the background, golden light bathing the scene, hair and cape flowing gently in the wind, cinematic epic atmosphere, dynamic motion, majestic clouds drifting, ultra realistic, high fantasy world, 4K ultra-detailed",
204
- "https://d2g64w682n9w0w.cloudfront.net/media/images/1745727436576834405_rtsokheb.jpg"
205
- ],
206
- [
207
- "A girl stands in a lively 17th-century market. She holds a red tomato, looks gently into the camera and smiles briefly. Then, she glances at the tomato in her hand, slowly sets it back into the basket, turns around gracefully, and walks away with her back to the camera. The market around her is rich with colorful vegetables, meats hanging above, and bustling townsfolk. Golden-hour painterly lighting, subtle facial expressions, smooth cinematic motion, ultra-realistic detail, Vermeer-inspired style",
208
- "https://d2g64w682n9w0w.cloudfront.net/media/images/1745079024013078406_QT6jKNPZ.png"
209
- ],
210
- [
211
- "A calming video explaining diabetes management and prevention tips to reduce anxiety.",
212
- "https://d2g64w682n9w0w.cloudfront.net/predictions/517d518c28ef49ed9464610af48528f5/1.jpg"
213
- ],
214
- [
215
- "Girl dancing and spinning with friends.",
216
- "https://d2g64w682n9w0w.cloudfront.net/media/d45e0d4893d44712b359f3ad0b3c2795/images/1745449961409630099_KISOKGEB.jpg"
217
- ]
218
- ],
219
- inputs=[prompt, img_input], # 同时绑定到图片和提示输入框
220
- label="Example Inputs",
221
- examples_per_page=3
222
- )
223
 
224
- random_seed_btn.click(
225
- fn=lambda: random.randint(0, 999999),
226
- outputs=seed
227
- )
 
 
228
 
 
 
 
 
229
  generate_btn.click(
230
- generate_video,
231
- inputs=[img_input, prompt, duration, enable_safety, flow_shift,
232
- guidance, negative_prompt, steps, seed, size],
233
- outputs=[output, video_output]
234
  )
235
 
 
236
  if __name__ == "__main__":
237
- app.queue(max_size=4).launch(
238
- server_name="0.0.0.0",
239
- max_threads=16,
240
- debug=True
241
- )
 
11
  from dotenv import load_dotenv
12
  import gradio as gr
13
  import random
14
+ import torch
15
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
16
+ from functools import lru_cache
17
 
18
+ # 加载环境变量
19
  load_dotenv()
20
 
21
+ # ==== 新增安全检测模块 ====
22
+ MODEL_URL = "TostAI/nsfw-text-detection-large"
23
+ CLASS_NAMES = {
24
+ 0: "✅ SAFE",
25
+ 1: "⚠️ QUESTIONABLE",
26
+ 2: "🚫 UNSAFE"
27
+ }
28
+
29
+ # 加载模型和tokenizer
30
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
31
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
32
+
33
+ @lru_cache(maxsize=128)
34
+ def classify_text(text):
35
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
36
+ with torch.no_grad():
37
+ outputs = model(**inputs)
38
+ return torch.argmax(outputs.logits, dim=1).item()
39
+
40
+ # ==== 会话管理模块 ====
41
+ class SessionManager:
42
+ _instances = {}
43
+ _lock = threading.Lock()
44
+
45
+ @classmethod
46
+ def get_session(cls, session_id):
47
+ with cls._lock:
48
+ if session_id not in cls._instances:
49
+ cls._instances[session_id] = {
50
+ 'request_count': 0,
51
+ 'last_request': time.time(),
52
+ 'history': []
53
+ }
54
+ return cls._instances[session_id]
55
+
56
+ @classmethod
57
+ def cleanup_sessions(cls):
58
+ with cls._lock:
59
+ now = time.time()
60
+ expired = [k for k, v in cls._instances.items() if now - v['last_request'] > 3600]
61
+ for k in expired:
62
+ del cls._instances[k]
63
+
64
+ # ==== 频率限制模块 ====
65
+ class RateLimiter:
66
+ def __init__(self):
67
+ self.client_data = {}
68
+
69
+ def check_limit(self, client_id):
70
+ if client_id not in self.client_data:
71
+ self.client_data[client_id] = {
72
+ 'count': 0,
73
+ 'reset_time': time.time() + 3600
74
  }
75
+
76
+ if time.time() > self.client_data[client_id]['reset_time']:
77
+ self.client_data[client_id] = {
78
+ 'count': 0,
79
+ 'reset_time': time.time() + 3600
80
+ }
81
+
82
+ if self.client_data[client_id]['count'] >= 20:
83
+ return False
84
+ self.client_data[client_id]['count'] += 1
85
+ return True
86
+
87
+ # ==== 错误处理模块 ====
88
+ def create_error_image(message):
89
+ img = Image.new("RGB", (832, 480), color="#ffdddd")
90
+ draw = ImageDraw.Draw(img)
91
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  try:
93
+ font = ImageFont.truetype("arial.ttf", 24)
94
+ except:
95
+ font = ImageFont.load_default()
96
+
97
+ text_width, text_height = draw.textsize(message, font=font)
98
+ x = (832 - text_width) / 2
99
+ y = (480 - text_height) / 2
100
+
101
+ draw.text((x, y), message, fill="#ff4444", font=font)
102
+ img.save("error.jpg")
103
+ return "error.jpg"
104
+
105
+ # ==== 核心生成逻辑 ====
106
+ def generate_video(/* 保持原有参数 */):
107
+ # 新增安全检测
108
+ safety_level = classify_text(prompt)
109
+ if safety_level != 0:
110
+ error_msg = f"Content blocked: {CLASS_NAMES[safety_level]}"
111
+ error_img = create_error_image(error_msg)
112
+ yield f"❌ {error_msg}", error_img
113
  return
114
 
115
+ # 新增频率检查
116
+ session = SessionManager.get_session(session_id)
117
+ if session['request_count'] >= 20:
118
+ yield "❌ Hourly limit exceeded (20 requests)", None
119
+ return
120
+ session['request_count'] += 1
 
 
 
 
 
 
 
 
 
 
 
121
 
122
+ # 原有生成逻辑保持不变,增加状态跟踪
123
  try:
124
+ # API调用部分
125
+ response = requests.post(/* 保持原有参数 */)
 
 
 
126
 
127
+ # 轮询部分增加进度跟踪
128
+ while True:
129
+ # 获取状态
130
+ status = get_status(request_id)
131
 
132
+ # 更新会话最后活动时间
133
+ session['last_request'] = time.time()
134
+
135
+ # 处理不同状态
136
+ if status == 'processing':
137
+ yield f"⏳ 生成进度: {progress}%", None
138
+ elif status == 'completed':
139
+ session['history'].append(video_url)
140
+ yield f"✅ 生成完成", video_url
 
 
 
 
 
 
 
 
141
  return
142
 
143
+ except Exception as e:
144
+ error_img = create_error_image(str(e))
145
+ yield f"❌ 生成失败: {str(e)}", error_img
146
+
147
+ # ==== 新增定时清理任务 ====
148
+ def start_cleanup_task():
149
+ def cleanup():
150
+ while True:
151
+ SessionManager.cleanup_sessions()
152
+ time.sleep(3600)
153
 
154
+ thread = threading.Thread(target=cleanup)
155
+ thread.daemon = True
156
+ thread.start()
157
+
158
+ # ==== 界面增强 ====
159
+ with gr.Blocks(/* 保持原有参数 */) as app:
160
+ # 新增状态组件
161
+ status_bars = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
+ with gr.Row():
164
+ for backend in ["WAN-2.1", "FLUX", "TURBO"]: # 示例后端
165
+ with gr.Column():
166
+ gr.Markdown(f"**{backend}**")
167
+ status_bars[backend] = gr.Textbox(label="状态", value="🟢 空闲")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
+ # 在生成按钮点击时更新状态
170
+ generate_btn.click(
171
+ fn=update_status,
172
+ inputs=[...],
173
+ outputs=[status_bars]
174
+ )
175
 
176
+ # 新增历史记录模块
177
+ history = gr.Gallery(label="生成历史")
178
+
179
+ # 在生成完成后更新历史
180
  generate_btn.click(
181
+ fn=update_history,
182
+ inputs=[video_output],
183
+ outputs=[history]
 
184
  )
185
 
186
+ # ==== 启动时初始化 ====
187
  if __name__ == "__main__":
188
+ start_cleanup_task()
189
+ app.queue(/* 保持原有参数 */)