File size: 10,652 Bytes
7e57ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import requests
import json
import time
import threading
import shutil
from datetime import datetime
from pathlib import Path
from http.server import HTTPServer, SimpleHTTPRequestHandler
import base64
from dotenv import load_dotenv
import gradio as gr
import random

load_dotenv()

def image_to_base64(file_path):
    try:
        with open(file_path, "rb") as image_file:
            # 处理特殊MIME类型
            ext = Path(file_path).suffix.lower().lstrip('.')
            mime_map = {
                'jpg': 'jpeg',
                'jpeg': 'jpeg',
                'png': 'png',
                'webp': 'webp',
                'gif': 'gif'
            }
            mime_type = mime_map.get(ext, 'jpeg')
            
            # 读取并编码
            raw_data = image_file.read()
            encoded = base64.b64encode(raw_data)
            missing_padding = len(encoded) % 4
            if missing_padding:
                encoded += b'=' * (4 - missing_padding)
                
            return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}"
            
    except Exception as e:
        raise ValueError(f"Base64编码失败: {str(e)}")

def generate_random_seed():
    return random.randint(0, 999999)

def generate_video(

    image,

    prompt,

    duration,

    enable_safety,

    flow_shift,

    guidance_scale,

    negative_prompt,

    inference_steps,

    seed,

    size

):
    API_KEY = os.getenv("WAVESPEED_API_KEY")
    if not API_KEY:
        yield "❌ Error: Missing API Key", None
        return

    try:
        base64_image = image_to_base64(image)
    except Exception as e:
        yield f"❌ File upload failed: {str(e)}", None
        return

    payload = {
        "duration": duration,
        "enable_safety_checker": enable_safety,
        "flow_shift": flow_shift,
        "guidance_scale": guidance_scale,
        "image": base64_image,
        "negative_prompt": negative_prompt,
        "num_inference_steps": inference_steps,
        "prompt": prompt,
        "seed": seed,
        "size": size
    }

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }

    try:
        response = requests.post(
            "https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast",
            headers=headers,
            data=json.dumps(payload)
        )
        
        if response.status_code != 200:
            yield f"❌ API Error ({response.status_code}): {response.text}", None
            return
            
        request_id = response.json()["data"]["id"]
        yield f"✅ Task submitted (ID: {request_id})", None
    except Exception as e:
        yield f"❌ Connection Error: {str(e)}", None
        return

    # 轮询结果
    result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
    start_time = time.time()
    video_url = None
    
    while True:
        time.sleep(1)
        try:
            response = requests.get(result_url, headers={"Authorization": f"Bearer {API_KEY}"})
            if response.status_code != 200:
                yield f"❌ Polling Error ({response.status_code}): {response.text}", None
                return

            data = response.json()["data"]
            status = data["status"]
            
            if status == "completed":
                elapsed = time.time() - start_time
                video_url = data['outputs'][0]
                yield (f"🎉 Completed in {elapsed:.1f}s!\n"
                       f"Download URL: {video_url}"), video_url
                return
                
            elif status == "failed":
                yield f"❌ Failed: {data.get('error', 'Unknown error')}", None
                return
                
            else:
                yield f"⏳ Status: {status.capitalize()}...", None
                
        except Exception as e:
            yield f"❌ Polling Failed: {str(e)}", None
            return

# Gradio UI
with gr.Blocks(
    theme=gr.themes.Soft(), 
    css="""

    .video-preview {

        max-width: 600px !important

        }

    .example-preview {

        border: 1px solid #e0e0e0;

        border-radius: 8px;

        padding: 10px;

        margin: 5px;

    }

    .example-preview img {

        max-width: 200px;

        max-height: 150px;

    }

    """
    ) as app:

    session_id = gr.State(None)

    gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI")

    gr.Markdown("""

        [WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation.

        Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.

        """)
    gr.Markdown("""

        The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity.

        """)
    
    with gr.Row():        
        # 右侧控制面板
        with gr.Column(scale=1):
            with gr.Row():
                with gr.Column(scale=1):
                    img_input = gr.Image(type="filepath", label="Upload Image")
                    prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Describe your scene...")
                    negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
                    size = gr.Dropdown(["832*480"], value="832*480", label="Resolution")
                    steps = gr.Slider(1, 50, value=30, step=1, label="Inference Steps")
                    duration = gr.Slider(0, 10, value=5, step=5, label="Duration (seconds)")
                    guidance = gr.Slider(1, 30, value=5, step=0.1, label="Guidance Scale") 
                    seed = gr.Number(-1, label="Seed")
                    random_seed_btn = gr.Button("🎲random seed", variant="secondary")
                    flow_shift = gr.Number(3, label="Flow Shift",interactive=False)
                    enable_safety = gr.Checkbox(True, label="Safety Checker",interactive=False)
        # 左侧视频展示区域
        with gr.Column(scale=1):
                    video_output = gr.Video(label="Generated Video",format="mp4",interactive=False,elem_classes=["video-preview"]
                    )
                    generate_btn = gr.Button("Generate Video", variant="primary")
                    output = gr.Textbox(label="Status", interactive=False, lines=4)
                    gr.Examples(
                        examples=[
                            [
                                "Victorian era, 19th-century gentleman wearing a black top hat and tuxedo, standing on a cobblestone street, dim gaslight lamps, passersby in vintage clothing, gentle breeze moving his coat, slow cinematic pan around him, nostalgic retro film style, realistic textures",
                                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745725874603980753_95mFCAxu.jpg"
                            ],
                            [
                                "A cyberpunk female warrior with short silver hair and glowing green eyes, wearing a futuristic armored suit, standing in a neon-lit rainy city street, camera slowly circling around her, raindrops falling in slow motion, neon reflections on wet pavement, cinematic atmosphere, highly detailed, ultra realistic, 4K",
                                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745726299175719855_pFO0WSRM.jpg"
                            ],
                            [
                                "Wide shot of a brave medieval female knight in shining silver armor and a red cape, standing on a castle rooftop at sunset, slowly drawing a large ornate sword from its scabbard, seen from a distance with the vast castle and surrounding landscape in the background, golden light bathing the scene, hair and cape flowing gently in the wind, cinematic epic atmosphere, dynamic motion, majestic clouds drifting, ultra realistic, high fantasy world, 4K ultra-detailed",
                                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745727436576834405_rtsokheb.jpg"
                            ],
                            [
                                "A girl stands in a lively 17th-century market. She holds a red tomato, looks gently into the camera and smiles briefly. Then, she glances at the tomato in her hand, slowly sets it back into the basket, turns around gracefully, and walks away with her back to the camera. The market around her is rich with colorful vegetables, meats hanging above, and bustling townsfolk. Golden-hour painterly lighting, subtle facial expressions, smooth cinematic motion, ultra-realistic detail, Vermeer-inspired style",
                                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745079024013078406_QT6jKNPZ.png"
                            ],
                            [
                                "A calming video explaining diabetes management and prevention tips to reduce anxiety.",
                                "https://d2g64w682n9w0w.cloudfront.net/predictions/517d518c28ef49ed9464610af48528f5/1.jpg"
                            ],
                            [
                                "Girl dancing and spinning with friends.",
                                "https://d2g64w682n9w0w.cloudfront.net/media/d45e0d4893d44712b359f3ad0b3c2795/images/1745449961409630099_KISOKGEB.jpg"
                            ]
                        ],
                        inputs=[prompt, img_input],  # 同时绑定到图片和提示输入框
                        label="Example Inputs",
                        examples_per_page=3
                    )
                
    random_seed_btn.click(
        fn=lambda: random.randint(0, 999999),
        outputs=seed
    )   

    generate_btn.click(
        generate_video,
        inputs=[img_input, prompt, duration, enable_safety, flow_shift, 
               guidance, negative_prompt, steps, seed, size],
        outputs=[output, video_output]
    )

if __name__ == "__main__":
    app.queue(max_size=4).launch(
        server_name="0.0.0.0", 
        max_threads=16,
        debug=True
    )