File size: 10,652 Bytes
7e57ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import requests
import json
import time
import threading
import shutil
from datetime import datetime
from pathlib import Path
from http.server import HTTPServer, SimpleHTTPRequestHandler
import base64
from dotenv import load_dotenv
import gradio as gr
import random
load_dotenv()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
# 处理特殊MIME类型
ext = Path(file_path).suffix.lower().lstrip('.')
mime_map = {
'jpg': 'jpeg',
'jpeg': 'jpeg',
'png': 'png',
'webp': 'webp',
'gif': 'gif'
}
mime_type = mime_map.get(ext, 'jpeg')
# 读取并编码
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}"
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_random_seed():
return random.randint(0, 999999)
def generate_video(
image,
prompt,
duration,
enable_safety,
flow_shift,
guidance_scale,
negative_prompt,
inference_steps,
seed,
size
):
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
yield "❌ Error: Missing API Key", None
return
try:
base64_image = image_to_base64(image)
except Exception as e:
yield f"❌ File upload failed: {str(e)}", None
return
payload = {
"duration": duration,
"enable_safety_checker": enable_safety,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"image": base64_image,
"negative_prompt": negative_prompt,
"num_inference_steps": inference_steps,
"prompt": prompt,
"seed": seed,
"size": size
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
yield f"❌ API Error ({response.status_code}): {response.text}", None
return
request_id = response.json()["data"]["id"]
yield f"✅ Task submitted (ID: {request_id})", None
except Exception as e:
yield f"❌ Connection Error: {str(e)}", None
return
# 轮询结果
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
video_url = None
while True:
time.sleep(1)
try:
response = requests.get(result_url, headers={"Authorization": f"Bearer {API_KEY}"})
if response.status_code != 200:
yield f"❌ Polling Error ({response.status_code}): {response.text}", None
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
yield (f"🎉 Completed in {elapsed:.1f}s!\n"
f"Download URL: {video_url}"), video_url
return
elif status == "failed":
yield f"❌ Failed: {data.get('error', 'Unknown error')}", None
return
else:
yield f"⏳ Status: {status.capitalize()}...", None
except Exception as e:
yield f"❌ Polling Failed: {str(e)}", None
return
# Gradio UI
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview {
max-width: 600px !important
}
.example-preview {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
margin: 5px;
}
.example-preview img {
max-width: 200px;
max-height: 150px;
}
"""
) as app:
session_id = gr.State(None)
gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI")
gr.Markdown("""
[WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation.
Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.
""")
gr.Markdown("""
The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity.
""")
with gr.Row():
# 右侧控制面板
with gr.Column(scale=1):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(type="filepath", label="Upload Image")
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Describe your scene...")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
size = gr.Dropdown(["832*480"], value="832*480", label="Resolution")
steps = gr.Slider(1, 50, value=30, step=1, label="Inference Steps")
duration = gr.Slider(0, 10, value=5, step=5, label="Duration (seconds)")
guidance = gr.Slider(1, 30, value=5, step=0.1, label="Guidance Scale")
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("🎲random seed", variant="secondary")
flow_shift = gr.Number(3, label="Flow Shift",interactive=False)
enable_safety = gr.Checkbox(True, label="Safety Checker",interactive=False)
# 左侧视频展示区域
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Video",format="mp4",interactive=False,elem_classes=["video-preview"]
)
generate_btn = gr.Button("Generate Video", variant="primary")
output = gr.Textbox(label="Status", interactive=False, lines=4)
gr.Examples(
examples=[
[
"Victorian era, 19th-century gentleman wearing a black top hat and tuxedo, standing on a cobblestone street, dim gaslight lamps, passersby in vintage clothing, gentle breeze moving his coat, slow cinematic pan around him, nostalgic retro film style, realistic textures",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745725874603980753_95mFCAxu.jpg"
],
[
"A cyberpunk female warrior with short silver hair and glowing green eyes, wearing a futuristic armored suit, standing in a neon-lit rainy city street, camera slowly circling around her, raindrops falling in slow motion, neon reflections on wet pavement, cinematic atmosphere, highly detailed, ultra realistic, 4K",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745726299175719855_pFO0WSRM.jpg"
],
[
"Wide shot of a brave medieval female knight in shining silver armor and a red cape, standing on a castle rooftop at sunset, slowly drawing a large ornate sword from its scabbard, seen from a distance with the vast castle and surrounding landscape in the background, golden light bathing the scene, hair and cape flowing gently in the wind, cinematic epic atmosphere, dynamic motion, majestic clouds drifting, ultra realistic, high fantasy world, 4K ultra-detailed",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745727436576834405_rtsokheb.jpg"
],
[
"A girl stands in a lively 17th-century market. She holds a red tomato, looks gently into the camera and smiles briefly. Then, she glances at the tomato in her hand, slowly sets it back into the basket, turns around gracefully, and walks away with her back to the camera. The market around her is rich with colorful vegetables, meats hanging above, and bustling townsfolk. Golden-hour painterly lighting, subtle facial expressions, smooth cinematic motion, ultra-realistic detail, Vermeer-inspired style",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745079024013078406_QT6jKNPZ.png"
],
[
"A calming video explaining diabetes management and prevention tips to reduce anxiety.",
"https://d2g64w682n9w0w.cloudfront.net/predictions/517d518c28ef49ed9464610af48528f5/1.jpg"
],
[
"Girl dancing and spinning with friends.",
"https://d2g64w682n9w0w.cloudfront.net/media/d45e0d4893d44712b359f3ad0b3c2795/images/1745449961409630099_KISOKGEB.jpg"
]
],
inputs=[prompt, img_input], # 同时绑定到图片和提示输入框
label="Example Inputs",
examples_per_page=3
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[img_input, prompt, duration, enable_safety, flow_shift,
guidance, negative_prompt, steps, seed, size],
outputs=[output, video_output]
)
if __name__ == "__main__":
app.queue(max_size=4).launch(
server_name="0.0.0.0",
max_threads=16,
debug=True
) |