Spaces:
Running
on
Zero
Running
on
Zero
warshanks
commited on
Commit
·
b60fb62
1
Parent(s):
cb74b60
Init
Browse files- README.md +10 -6
- app.py +210 -44
- requirements.txt +251 -1
- style.css +11 -0
- uv.lock +0 -0
README.md
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
1 |
---
|
2 |
+
title: MedGemma 4B IT
|
3 |
+
models: [google/medgemma-4b-it]
|
4 |
+
preload_from_hub: google/medgemma-4b-it
|
5 |
+
emoji: 🩻
|
6 |
+
colorFrom: blue
|
7 |
+
colorTo: green
|
8 |
sdk: gradio
|
9 |
+
sdk_version: 5.21.0
|
10 |
app_file: app.py
|
11 |
pinned: false
|
12 |
+
thumbnail: >-
|
13 |
+
https://cdn-uploads.huggingface.co/production/uploads/67340377534ff3213928481b/f2kd9Zs0G-chH0ZwfDSOT.png
|
14 |
---
|
15 |
|
16 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,64 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
"""
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
messages,
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(
|
50 |
-
gr.Slider(
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
from collections.abc import Iterator
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
import cv2
|
10 |
import gradio as gr
|
11 |
+
import spaces
|
12 |
+
import torch
|
13 |
+
from loguru import logger
|
14 |
+
from PIL import Image
|
15 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
|
17 |
+
model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it")
|
18 |
+
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
19 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
20 |
+
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
|
21 |
+
)
|
22 |
+
|
23 |
+
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
24 |
+
|
25 |
+
|
26 |
+
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
27 |
+
image_count = 0
|
28 |
+
video_count = 0
|
29 |
+
for path in paths:
|
30 |
+
if path.endswith(".mp4"):
|
31 |
+
video_count += 1
|
32 |
+
else:
|
33 |
+
image_count += 1
|
34 |
+
return image_count, video_count
|
35 |
+
|
36 |
+
|
37 |
+
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
38 |
+
image_count = 0
|
39 |
+
video_count = 0
|
40 |
+
for item in history:
|
41 |
+
if item["role"] != "user" or isinstance(item["content"], str):
|
42 |
+
continue
|
43 |
+
if item["content"][0].endswith(".mp4"):
|
44 |
+
video_count += 1
|
45 |
+
else:
|
46 |
+
image_count += 1
|
47 |
+
return image_count, video_count
|
48 |
+
|
49 |
+
|
50 |
+
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
51 |
+
new_image_count, new_video_count = count_files_in_new_message(message["files"])
|
52 |
+
history_image_count, history_video_count = count_files_in_history(history)
|
53 |
+
image_count = history_image_count + new_image_count
|
54 |
+
video_count = history_video_count + new_video_count
|
55 |
+
if video_count > 1:
|
56 |
+
gr.Warning("Only one video is supported.")
|
57 |
+
return False
|
58 |
+
if video_count == 1:
|
59 |
+
if image_count > 0:
|
60 |
+
gr.Warning("Mixing images and videos is not allowed.")
|
61 |
+
return False
|
62 |
+
if "<image>" in message["text"]:
|
63 |
+
gr.Warning("Using <image> tags with video files is not supported.")
|
64 |
+
return False
|
65 |
+
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
66 |
+
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
67 |
+
return False
|
68 |
+
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
|
69 |
+
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
70 |
+
return False
|
71 |
+
return True
|
72 |
+
|
73 |
+
|
74 |
+
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
75 |
+
vidcap = cv2.VideoCapture(video_path)
|
76 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
77 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
78 |
+
|
79 |
+
frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
|
80 |
+
frames: list[tuple[Image.Image, float]] = []
|
81 |
+
|
82 |
+
for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
|
83 |
+
if len(frames) >= MAX_NUM_IMAGES:
|
84 |
+
break
|
85 |
|
86 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
87 |
+
success, image = vidcap.read()
|
88 |
+
if success:
|
89 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
90 |
+
pil_image = Image.fromarray(image)
|
91 |
+
timestamp = round(i / fps, 2)
|
92 |
+
frames.append((pil_image, timestamp))
|
93 |
|
94 |
+
vidcap.release()
|
95 |
+
return frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
def process_video(video_path: str) -> list[dict]:
|
99 |
+
content = []
|
100 |
+
frames = downsample_video(video_path)
|
101 |
+
for frame in frames:
|
102 |
+
pil_image, timestamp = frame
|
103 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
104 |
+
pil_image.save(temp_file.name)
|
105 |
+
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
106 |
+
content.append({"type": "image", "url": temp_file.name})
|
107 |
+
logger.debug(f"{content=}")
|
108 |
+
return content
|
109 |
|
|
|
110 |
|
111 |
+
def process_interleaved_images(message: dict) -> list[dict]:
|
112 |
+
logger.debug(f"{message['files']=}")
|
113 |
+
parts = re.split(r"(<image>)", message["text"])
|
114 |
+
logger.debug(f"{parts=}")
|
115 |
+
|
116 |
+
content = []
|
117 |
+
image_index = 0
|
118 |
+
for part in parts:
|
119 |
+
logger.debug(f"{part=}")
|
120 |
+
if part == "<image>":
|
121 |
+
content.append({"type": "image", "url": message["files"][image_index]})
|
122 |
+
logger.debug(f"file: {message['files'][image_index]}")
|
123 |
+
image_index += 1
|
124 |
+
elif part.strip():
|
125 |
+
content.append({"type": "text", "text": part.strip()})
|
126 |
+
elif isinstance(part, str) and part != "<image>":
|
127 |
+
content.append({"type": "text", "text": part})
|
128 |
+
logger.debug(f"{content=}")
|
129 |
+
return content
|
130 |
+
|
131 |
+
|
132 |
+
def process_new_user_message(message: dict) -> list[dict]:
|
133 |
+
if not message["files"]:
|
134 |
+
return [{"type": "text", "text": message["text"]}]
|
135 |
+
|
136 |
+
if message["files"][0].endswith(".mp4"):
|
137 |
+
return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
|
138 |
+
|
139 |
+
if "<image>" in message["text"]:
|
140 |
+
return process_interleaved_images(message)
|
141 |
+
|
142 |
+
return [
|
143 |
+
{"type": "text", "text": message["text"]},
|
144 |
+
*[{"type": "image", "url": path} for path in message["files"]],
|
145 |
+
]
|
146 |
+
|
147 |
+
|
148 |
+
def process_history(history: list[dict]) -> list[dict]:
|
149 |
+
messages = []
|
150 |
+
current_user_content: list[dict] = []
|
151 |
+
for item in history:
|
152 |
+
if item["role"] == "assistant":
|
153 |
+
if current_user_content:
|
154 |
+
messages.append({"role": "user", "content": current_user_content})
|
155 |
+
current_user_content = []
|
156 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
157 |
+
else:
|
158 |
+
content = item["content"]
|
159 |
+
if isinstance(content, str):
|
160 |
+
current_user_content.append({"type": "text", "text": content})
|
161 |
+
else:
|
162 |
+
current_user_content.append({"type": "image", "url": content[0]})
|
163 |
+
return messages
|
164 |
+
|
165 |
+
|
166 |
+
@spaces.GPU(duration=120)
|
167 |
+
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048) -> Iterator[str]:
|
168 |
+
if not validate_media_constraints(message, history):
|
169 |
+
yield ""
|
170 |
+
return
|
171 |
+
|
172 |
+
messages = []
|
173 |
+
if system_prompt:
|
174 |
+
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
175 |
+
messages.extend(process_history(history))
|
176 |
+
messages.append({"role": "user", "content": process_new_user_message(message)})
|
177 |
+
|
178 |
+
inputs = processor.apply_chat_template(
|
179 |
messages,
|
180 |
+
add_generation_prompt=True,
|
181 |
+
tokenize=True,
|
182 |
+
return_dict=True,
|
183 |
+
return_tensors="pt",
|
184 |
+
).to(device=model.device, dtype=torch.bfloat16)
|
|
|
185 |
|
186 |
+
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
187 |
+
generate_kwargs = dict(
|
188 |
+
inputs,
|
189 |
+
max_new_tokens=max_new_tokens,
|
190 |
+
streamer=streamer,
|
191 |
+
temperature=1.0,
|
192 |
+
top_p=0.95,
|
193 |
+
top_k=64,
|
194 |
+
min_p=0.0,
|
195 |
+
)
|
196 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
197 |
+
t.start()
|
198 |
|
199 |
+
output = ""
|
200 |
+
for delta in streamer:
|
201 |
+
output += delta
|
202 |
+
yield output
|
203 |
|
204 |
+
|
205 |
+
DESCRIPTION = """\
|
206 |
+
This is a demo of MedGemma, a Gemma 3 variant trained for performance on medical text and image comprehension.
|
207 |
+
You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.
|
208 |
"""
|
209 |
+
|
|
|
210 |
demo = gr.ChatInterface(
|
211 |
+
fn=run,
|
212 |
+
type="messages",
|
213 |
+
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
214 |
+
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
|
215 |
+
multimodal=True,
|
216 |
additional_inputs=[
|
217 |
+
gr.Textbox(label="System Prompt", value=""),
|
218 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=8192, step=10, value=2048),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
],
|
220 |
+
stop_btn=False,
|
221 |
+
title="MedGemma 4B IT",
|
222 |
+
description=DESCRIPTION,
|
223 |
+
run_examples_on_click=False,
|
224 |
+
cache_examples=False,
|
225 |
+
css_paths="style.css",
|
226 |
+
delete_cache=(1800, 1800),
|
227 |
)
|
228 |
|
|
|
229 |
if __name__ == "__main__":
|
230 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,251 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml -o requirements.txt
|
3 |
+
accelerate==1.4.0
|
4 |
+
# via gemma-3-12b-it (pyproject.toml)
|
5 |
+
aiofiles==23.2.1
|
6 |
+
# via gradio
|
7 |
+
annotated-types==0.7.0
|
8 |
+
# via pydantic
|
9 |
+
anyio==4.8.0
|
10 |
+
# via
|
11 |
+
# gradio
|
12 |
+
# httpx
|
13 |
+
# starlette
|
14 |
+
certifi==2025.1.31
|
15 |
+
# via
|
16 |
+
# httpcore
|
17 |
+
# httpx
|
18 |
+
# requests
|
19 |
+
charset-normalizer==3.4.1
|
20 |
+
# via requests
|
21 |
+
click==8.1.8
|
22 |
+
# via
|
23 |
+
# typer
|
24 |
+
# uvicorn
|
25 |
+
exceptiongroup==1.2.2
|
26 |
+
# via anyio
|
27 |
+
fastapi==0.115.11
|
28 |
+
# via gradio
|
29 |
+
ffmpy==0.5.0
|
30 |
+
# via gradio
|
31 |
+
filelock==3.17.0
|
32 |
+
# via
|
33 |
+
# huggingface-hub
|
34 |
+
# torch
|
35 |
+
# transformers
|
36 |
+
# triton
|
37 |
+
fsspec==2025.3.0
|
38 |
+
# via
|
39 |
+
# gradio-client
|
40 |
+
# huggingface-hub
|
41 |
+
# torch
|
42 |
+
gradio==5.21.0
|
43 |
+
# via
|
44 |
+
# gemma-3-12b-it (pyproject.toml)
|
45 |
+
# spaces
|
46 |
+
gradio-client==1.7.2
|
47 |
+
# via gradio
|
48 |
+
groovy==0.1.2
|
49 |
+
# via gradio
|
50 |
+
h11==0.14.0
|
51 |
+
# via
|
52 |
+
# httpcore
|
53 |
+
# uvicorn
|
54 |
+
hf-transfer==0.1.9
|
55 |
+
# via gemma-3-12b-it (pyproject.toml)
|
56 |
+
httpcore==1.0.7
|
57 |
+
# via httpx
|
58 |
+
httpx==0.28.1
|
59 |
+
# via
|
60 |
+
# gradio
|
61 |
+
# gradio-client
|
62 |
+
# safehttpx
|
63 |
+
# spaces
|
64 |
+
huggingface-hub==0.29.2
|
65 |
+
# via
|
66 |
+
# accelerate
|
67 |
+
# gradio
|
68 |
+
# gradio-client
|
69 |
+
# tokenizers
|
70 |
+
# transformers
|
71 |
+
idna==3.10
|
72 |
+
# via
|
73 |
+
# anyio
|
74 |
+
# httpx
|
75 |
+
# requests
|
76 |
+
jinja2==3.1.6
|
77 |
+
# via
|
78 |
+
# gradio
|
79 |
+
# torch
|
80 |
+
loguru==0.7.3
|
81 |
+
# via gemma-3-12b-it (pyproject.toml)
|
82 |
+
markdown-it-py==3.0.0
|
83 |
+
# via rich
|
84 |
+
markupsafe==2.1.5
|
85 |
+
# via
|
86 |
+
# gradio
|
87 |
+
# jinja2
|
88 |
+
mdurl==0.1.2
|
89 |
+
# via markdown-it-py
|
90 |
+
mpmath==1.3.0
|
91 |
+
# via sympy
|
92 |
+
networkx==3.4.2
|
93 |
+
# via torch
|
94 |
+
numpy==2.2.3
|
95 |
+
# via
|
96 |
+
# accelerate
|
97 |
+
# gradio
|
98 |
+
# opencv-python-headless
|
99 |
+
# pandas
|
100 |
+
# transformers
|
101 |
+
nvidia-cublas-cu12==12.1.3.1
|
102 |
+
# via
|
103 |
+
# nvidia-cudnn-cu12
|
104 |
+
# nvidia-cusolver-cu12
|
105 |
+
# torch
|
106 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
107 |
+
# via torch
|
108 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
109 |
+
# via torch
|
110 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
111 |
+
# via torch
|
112 |
+
nvidia-cudnn-cu12==9.1.0.70
|
113 |
+
# via torch
|
114 |
+
nvidia-cufft-cu12==11.0.2.54
|
115 |
+
# via torch
|
116 |
+
nvidia-curand-cu12==10.3.2.106
|
117 |
+
# via torch
|
118 |
+
nvidia-cusolver-cu12==11.4.5.107
|
119 |
+
# via torch
|
120 |
+
nvidia-cusparse-cu12==12.1.0.106
|
121 |
+
# via
|
122 |
+
# nvidia-cusolver-cu12
|
123 |
+
# torch
|
124 |
+
nvidia-nccl-cu12==2.20.5
|
125 |
+
# via torch
|
126 |
+
nvidia-nvjitlink-cu12==12.8.93
|
127 |
+
# via
|
128 |
+
# nvidia-cusolver-cu12
|
129 |
+
# nvidia-cusparse-cu12
|
130 |
+
nvidia-nvtx-cu12==12.1.105
|
131 |
+
# via torch
|
132 |
+
opencv-python-headless==4.11.0.86
|
133 |
+
# via gemma-3-12b-it (pyproject.toml)
|
134 |
+
orjson==3.10.15
|
135 |
+
# via gradio
|
136 |
+
packaging==24.2
|
137 |
+
# via
|
138 |
+
# accelerate
|
139 |
+
# gradio
|
140 |
+
# gradio-client
|
141 |
+
# huggingface-hub
|
142 |
+
# spaces
|
143 |
+
# transformers
|
144 |
+
pandas==2.2.3
|
145 |
+
# via gradio
|
146 |
+
pillow==11.1.0
|
147 |
+
# via gradio
|
148 |
+
protobuf==6.30.0
|
149 |
+
# via gemma-3-12b-it (pyproject.toml)
|
150 |
+
psutil==5.9.8
|
151 |
+
# via
|
152 |
+
# accelerate
|
153 |
+
# spaces
|
154 |
+
pydantic==2.10.6
|
155 |
+
# via
|
156 |
+
# fastapi
|
157 |
+
# gradio
|
158 |
+
# spaces
|
159 |
+
pydantic-core==2.27.2
|
160 |
+
# via pydantic
|
161 |
+
pydub==0.25.1
|
162 |
+
# via gradio
|
163 |
+
pygments==2.19.1
|
164 |
+
# via rich
|
165 |
+
python-dateutil==2.9.0.post0
|
166 |
+
# via pandas
|
167 |
+
python-multipart==0.0.20
|
168 |
+
# via gradio
|
169 |
+
pytz==2025.1
|
170 |
+
# via pandas
|
171 |
+
pyyaml==6.0.2
|
172 |
+
# via
|
173 |
+
# accelerate
|
174 |
+
# gradio
|
175 |
+
# huggingface-hub
|
176 |
+
# transformers
|
177 |
+
regex==2024.11.6
|
178 |
+
# via transformers
|
179 |
+
requests==2.32.3
|
180 |
+
# via
|
181 |
+
# huggingface-hub
|
182 |
+
# spaces
|
183 |
+
# transformers
|
184 |
+
rich==13.9.4
|
185 |
+
# via typer
|
186 |
+
ruff==0.9.10
|
187 |
+
# via gradio
|
188 |
+
safehttpx==0.1.6
|
189 |
+
# via gradio
|
190 |
+
safetensors==0.5.3
|
191 |
+
# via
|
192 |
+
# accelerate
|
193 |
+
# transformers
|
194 |
+
semantic-version==2.10.0
|
195 |
+
# via gradio
|
196 |
+
sentencepiece==0.2.0
|
197 |
+
# via gemma-3-12b-it (pyproject.toml)
|
198 |
+
shellingham==1.5.4
|
199 |
+
# via typer
|
200 |
+
six==1.17.0
|
201 |
+
# via python-dateutil
|
202 |
+
sniffio==1.3.1
|
203 |
+
# via anyio
|
204 |
+
spaces==0.32.0
|
205 |
+
# via gemma-3-12b-it (pyproject.toml)
|
206 |
+
starlette==0.46.1
|
207 |
+
# via
|
208 |
+
# fastapi
|
209 |
+
# gradio
|
210 |
+
sympy==1.13.3
|
211 |
+
# via torch
|
212 |
+
tokenizers==0.21.0
|
213 |
+
# via transformers
|
214 |
+
tomlkit==0.13.2
|
215 |
+
# via gradio
|
216 |
+
torch==2.4.0
|
217 |
+
# via
|
218 |
+
# gemma-3-12b-it (pyproject.toml)
|
219 |
+
# accelerate
|
220 |
+
tqdm==4.67.1
|
221 |
+
# via
|
222 |
+
# huggingface-hub
|
223 |
+
# transformers
|
224 |
+
transformers @ git+https://github.com/huggingface/transformers@2829013d2d00e63d75a1f6f7a3f003bc60cc69af
|
225 |
+
# via gemma-3-12b-it (pyproject.toml)
|
226 |
+
triton==3.0.0
|
227 |
+
# via torch
|
228 |
+
typer==0.15.2
|
229 |
+
# via gradio
|
230 |
+
typing-extensions==4.12.2
|
231 |
+
# via
|
232 |
+
# anyio
|
233 |
+
# fastapi
|
234 |
+
# gradio
|
235 |
+
# gradio-client
|
236 |
+
# huggingface-hub
|
237 |
+
# pydantic
|
238 |
+
# pydantic-core
|
239 |
+
# rich
|
240 |
+
# spaces
|
241 |
+
# torch
|
242 |
+
# typer
|
243 |
+
# uvicorn
|
244 |
+
tzdata==2025.1
|
245 |
+
# via pandas
|
246 |
+
urllib3==2.3.0
|
247 |
+
# via requests
|
248 |
+
uvicorn==0.34.0
|
249 |
+
# via gradio
|
250 |
+
websockets==15.0.1
|
251 |
+
# via gradio-client
|
style.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
#logo {
|
7 |
+
display: block;
|
8 |
+
margin: 0 auto;
|
9 |
+
width: 40%;
|
10 |
+
object-fit: contain;
|
11 |
+
}
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|