from typing import List, Dict, Optional, ClassVar, Any import weave from pydantic import BaseModel from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, Pattern, PatternRecognizer from presidio_anonymizer import AnonymizerEngine from ..base import Guardrail class PresidioPIIGuardrailResponse(BaseModel): contains_pii: bool detected_pii_types: Dict[str, List[str]] explanation: str anonymized_text: Optional[str] = None class PresidioPIIGuardrailSimpleResponse(BaseModel): contains_pii: bool explanation: str anonymized_text: Optional[str] = None #TODO: Add support for transformers workflow and not just Spacy class PresidioPIIGuardrail(Guardrail): @staticmethod def get_available_entities() -> List[str]: registry = RecognizerRegistry() analyzer = AnalyzerEngine(registry=registry) return [recognizer.supported_entities[0] for recognizer in analyzer.registry.recognizers] analyzer: AnalyzerEngine anonymizer: AnonymizerEngine selected_entities: List[str] should_anonymize: bool language: str def __init__( self, selected_entities: Optional[List[str]] = None, should_anonymize: bool = False, language: str = "en", deny_lists: Optional[Dict[str, List[str]]] = None, regex_patterns: Optional[Dict[str, List[Dict[str, str]]]] = None, custom_recognizers: Optional[List[Any]] = None ): # Initialize default values if selected_entities is None: selected_entities = [ "PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER", "LOCATION", "CREDIT_CARD", "US_SSN" ] # Get available entities dynamically available_entities = self.get_available_entities() # Validate selected entities invalid_entities = set(selected_entities) - set(available_entities) if invalid_entities: raise ValueError(f"Invalid entities: {invalid_entities}") # Initialize analyzer with default recognizers analyzer = AnalyzerEngine() # Add custom recognizers if provided if custom_recognizers: for recognizer in custom_recognizers: analyzer.registry.add_recognizer(recognizer) # Add deny list recognizers if provided if deny_lists: for entity_type, tokens in deny_lists.items(): deny_list_recognizer = PatternRecognizer( supported_entity=entity_type, deny_list=tokens ) analyzer.registry.add_recognizer(deny_list_recognizer) # Add regex pattern recognizers if provided if regex_patterns: for entity_type, patterns in regex_patterns.items(): presidio_patterns = [ Pattern( name=pattern.get("name", f"pattern_{i}"), regex=pattern["regex"], score=pattern.get("score", 0.5) ) for i, pattern in enumerate(patterns) ] regex_recognizer = PatternRecognizer( supported_entity=entity_type, patterns=presidio_patterns ) analyzer.registry.add_recognizer(regex_recognizer) # Initialize Presidio engines anonymizer = AnonymizerEngine() # Call parent class constructor with all fields super().__init__( analyzer=analyzer, anonymizer=anonymizer, selected_entities=selected_entities, should_anonymize=should_anonymize, language=language ) @weave.op() def guard(self, prompt: str, return_detected_types: bool = True, **kwargs) -> PresidioPIIGuardrailResponse | PresidioPIIGuardrailSimpleResponse: """ Check if the input prompt contains any PII using Presidio. Args: prompt: The text to analyze return_detected_types: If True, returns detailed PII type information """ # Analyze text for PII analyzer_results = self.analyzer.analyze( text=prompt, entities=self.selected_entities, language=self.language ) # Group results by entity type detected_pii = {} for result in analyzer_results: entity_type = result.entity_type text_slice = prompt[result.start:result.end] if entity_type not in detected_pii: detected_pii[entity_type] = [] detected_pii[entity_type].append(text_slice) # Create explanation explanation_parts = [] if detected_pii: explanation_parts.append("Found the following PII in the text:") for pii_type, instances in detected_pii.items(): explanation_parts.append(f"- {pii_type}: {len(instances)} instance(s)") else: explanation_parts.append("No PII detected in the text.") # Add information about what was checked explanation_parts.append("\nChecked for these PII types:") for entity in self.selected_entities: explanation_parts.append(f"- {entity}") # Anonymize if requested anonymized_text = None if self.should_anonymize and detected_pii: anonymized_result = self.anonymizer.anonymize( text=prompt, analyzer_results=analyzer_results ) anonymized_text = anonymized_result.text if return_detected_types: return PresidioPIIGuardrailResponse( contains_pii=bool(detected_pii), detected_pii_types=detected_pii, explanation="\n".join(explanation_parts), anonymized_text=anonymized_text ) else: return PresidioPIIGuardrailSimpleResponse( contains_pii=bool(detected_pii), explanation="\n".join(explanation_parts), anonymized_text=anonymized_text ) @weave.op() def predict(self, prompt: str, return_detected_types: bool = True, **kwargs) -> PresidioPIIGuardrailResponse | PresidioPIIGuardrailSimpleResponse: return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)