|
import gradio as gr |
|
from text_to_video import model_t2v_fun,setup_seed |
|
from omegaconf import OmegaConf |
|
import torch |
|
import imageio |
|
import os |
|
import cv2 |
|
import pandas as pd |
|
import torchvision |
|
import random |
|
from models import get_models |
|
|
|
from pipelines.pipeline_videogen import VideoGenPipeline |
|
from download import find_model |
|
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler |
|
from diffusers.models import AutoencoderKL |
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection |
|
|
|
|
|
config_path = "./base/configs/sample.yaml" |
|
args = OmegaConf.load("./base/configs/sample.yaml") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
} |
|
#component-0 { |
|
max-width: 730px; |
|
margin: auto; |
|
} |
|
""" |
|
|
|
sd_path = args.pretrained_path |
|
unet = get_models(args, sd_path).to(device, dtype=torch.float16) |
|
state_dict = find_model("./pretrained_models/lavie_base.pt") |
|
unet.load_state_dict(state_dict) |
|
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device) |
|
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") |
|
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) |
|
unet.eval() |
|
vae.eval() |
|
text_encoder_one.eval() |
|
|
|
def infer(prompt, seed_inp, ddim_steps,cfg, infer_type): |
|
if seed_inp!=-1: |
|
setup_seed(seed_inp) |
|
else: |
|
seed_inp = random.choice(range(10000000)) |
|
setup_seed(seed_inp) |
|
if infer_type == 'ddim': |
|
scheduler = DDIMScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
elif infer_type == 'eulerdiscrete': |
|
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
elif infer_type == 'ddpm': |
|
scheduler = DDPMScheduler.from_pretrained(sd_path, |
|
subfolder="scheduler", |
|
beta_start=args.beta_start, |
|
beta_end=args.beta_end, |
|
beta_schedule=args.beta_schedule) |
|
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet) |
|
model.to(device) |
|
if device == "cuda": |
|
model.enable_xformers_memory_efficient_attention() |
|
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video |
|
if not os.path.exists(args.output_folder): |
|
os.mkdir(args.output_folder) |
|
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8) |
|
|
|
|
|
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' |
|
|
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> |
|
Intern·Vchitect (Text-to-Video) |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Apply Intern·Vchitect to generate a video |
|
</p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>") |
|
gr.Markdown( |
|
"""<div style="text-align:center"> |
|
[<a href="https://arxiv.org/abs/2309.15103">Arxiv Report</a>] | [<a href="https://vchitect.github.io/LaVie-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/LaVie">Github</a>]</div> |
|
""" |
|
) |
|
with gr.Column(): |
|
with gr.Row(elem_id="col-container"): |
|
with gr.Column(): |
|
|
|
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) |
|
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim') |
|
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) |
|
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) |
|
cfg = gr.Number(label="guidance_scale",value=7.5) |
|
|
|
with gr.Column(): |
|
submit_btn = gr.Button("Generate video") |
|
video_out = gr.Video(label="Video result", elem_id="video-output") |
|
|
|
inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type] |
|
outputs = [video_out] |
|
|
|
ex = gr.Examples( |
|
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'], |
|
['a cute teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'], |
|
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'], |
|
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'], |
|
['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'], |
|
['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'], |
|
['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'], |
|
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'], |
|
['jungle river at sunset, ultra quality',400,50,7,'ddim'], |
|
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'], |
|
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'], |
|
['a confused grizzly bear in calculus class',1000,50,7,'ddim']], |
|
fn = infer, |
|
inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type], |
|
outputs=[video_out], |
|
cache_examples=True, |
|
) |
|
ex.dataset.headers = [""] |
|
|
|
submit_btn.click(infer, inputs, outputs) |
|
|
|
demo.queue(max_size=12, api_open=False).launch(show_api=False) |
|
|
|
|
|
|