Updated app.py to improve the syntax compatible with spaces.
Browse files
app.py
CHANGED
@@ -6,12 +6,13 @@ import torch
|
|
6 |
import streamlit as st
|
7 |
from dotenv import load_dotenv
|
8 |
from langchain_groq import ChatGroq
|
9 |
-
from
|
10 |
-
from
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
-
from
|
13 |
-
from
|
14 |
from langchain.chains import create_retrieval_chain
|
|
|
15 |
import numpy as np
|
16 |
from sentence_transformers import util
|
17 |
import time
|
@@ -19,15 +20,37 @@ import time
|
|
19 |
# Set device for model (CUDA if available)
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
22 |
-
# Load environment variables
|
23 |
load_dotenv()
|
24 |
|
25 |
# Set up the clinical assistant LLM
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Set up embeddings for clinical context (Bio_ClinicalBERT)
|
33 |
embeddings = HuggingFaceEmbeddings(
|
@@ -38,38 +61,74 @@ embeddings = HuggingFaceEmbeddings(
|
|
38 |
def load_clinical_data():
|
39 |
"""Load both flowcharts and patient cases"""
|
40 |
docs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
docs.append(Document(
|
52 |
-
page_content=
|
53 |
-
|
|
|
|
|
54 |
))
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
notes = "\n".join(
|
63 |
-
f"{k}: {v}" for k, v in case_data.items() if k.startswith("input")
|
64 |
-
)
|
65 |
-
docs.append(Document(
|
66 |
-
page_content=f"""
|
67 |
-
PATIENT CASE: {Path(case_file).stem}
|
68 |
-
Category: {Path(category_dir).name}
|
69 |
-
Notes: {notes}
|
70 |
-
""",
|
71 |
-
metadata={"source": case_file, "type": "patient_case"}
|
72 |
-
))
|
73 |
return docs
|
74 |
|
75 |
def build_vectorstore():
|
@@ -88,31 +147,45 @@ def get_vectorstore():
|
|
88 |
|
89 |
def run_rag_chat(query, vectorstore):
|
90 |
"""Run the Retrieval-Augmented Generation (RAG) for clinical questions"""
|
91 |
-
|
92 |
-
|
93 |
-
prompt_template = ChatPromptTemplate.from_template("""
|
94 |
-
You are a clinical assistant AI. Based on the following clinical context, provide a reasoned and medically sound answer to the question.
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
</context>
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
""")
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
create_stuff_documents_chain(llm, prompt_template)
|
111 |
-
)
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def calculate_hit_rate(retriever, query, expected_docs, k=3):
|
118 |
"""Calculate the hit rate for top-k retrieved documents"""
|
|
|
6 |
import streamlit as st
|
7 |
from dotenv import load_dotenv
|
8 |
from langchain_groq import ChatGroq
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_core.documents import Document
|
13 |
+
from langchain_core.prompts import ChatPromptTemplate
|
14 |
from langchain.chains import create_retrieval_chain
|
15 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
16 |
import numpy as np
|
17 |
from sentence_transformers import util
|
18 |
import time
|
|
|
20 |
# Set device for model (CUDA if available)
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
+
# Load environment variables - works for both local and Hugging Face Spaces
|
24 |
load_dotenv()
|
25 |
|
26 |
# Set up the clinical assistant LLM
|
27 |
+
# Try to get API key from Hugging Face Spaces secrets first, then fall back to .env file
|
28 |
+
try:
|
29 |
+
# For Hugging Face Spaces
|
30 |
+
from huggingface_hub.inference_api import InferenceApi
|
31 |
+
import os
|
32 |
+
groq_api_key = os.environ.get('GROQ_API_KEY')
|
33 |
|
34 |
+
# If not found in environment, try to get from st.secrets (Streamlit Cloud/Spaces)
|
35 |
+
if not groq_api_key and hasattr(st, 'secrets') and 'GROQ_API_KEY' in st.secrets:
|
36 |
+
groq_api_key = st.secrets['GROQ_API_KEY']
|
37 |
+
|
38 |
+
if not groq_api_key:
|
39 |
+
st.warning("API Key is not set in the secrets. Using a placeholder for UI demonstration.")
|
40 |
+
# For UI demonstration without API key
|
41 |
+
class MockLLM:
|
42 |
+
def invoke(self, prompt):
|
43 |
+
return {"answer": "This is a placeholder response. Please set up your GROQ_API_KEY to get real responses."}
|
44 |
+
llm = MockLLM()
|
45 |
+
else:
|
46 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.3-70b-versatile")
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"Error setting up LLM: {str(e)}")
|
50 |
+
class MockLLM:
|
51 |
+
def invoke(self, prompt):
|
52 |
+
return {"answer": f"Error setting up LLM: {str(e)}. Please check your API key configuration."}
|
53 |
+
llm = MockLLM()
|
54 |
|
55 |
# Set up embeddings for clinical context (Bio_ClinicalBERT)
|
56 |
embeddings = HuggingFaceEmbeddings(
|
|
|
61 |
def load_clinical_data():
|
62 |
"""Load both flowcharts and patient cases"""
|
63 |
docs = []
|
64 |
+
|
65 |
+
# Get the absolute path to the current script
|
66 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
67 |
+
|
68 |
+
# Try to handle potential errors with file loading
|
69 |
+
try:
|
70 |
+
# Load diagnosis flowcharts
|
71 |
+
flowchart_dir = os.path.join(current_dir, "Diagnosis_flowchart")
|
72 |
+
if os.path.exists(flowchart_dir):
|
73 |
+
for fpath in glob.glob(os.path.join(flowchart_dir, "*.json")):
|
74 |
+
try:
|
75 |
+
with open(fpath, 'r', encoding='utf-8') as f:
|
76 |
+
data = json.load(f)
|
77 |
+
content = f"""
|
78 |
+
DIAGNOSTIC FLOWCHART: {Path(fpath).stem}
|
79 |
+
Diagnostic Path: {data.get('diagnostic', 'N/A')}
|
80 |
+
Key Criteria: {data.get('knowledge', 'N/A')}
|
81 |
+
"""
|
82 |
+
docs.append(Document(
|
83 |
+
page_content=content,
|
84 |
+
metadata={"source": fpath, "type": "flowchart"}
|
85 |
+
))
|
86 |
+
except Exception as e:
|
87 |
+
st.warning(f"Error loading flowchart file {fpath}: {str(e)}")
|
88 |
+
else:
|
89 |
+
st.warning(f"Flowchart directory not found at {flowchart_dir}")
|
90 |
|
91 |
+
# Load patient cases
|
92 |
+
finished_dir = os.path.join(current_dir, "Finished")
|
93 |
+
if os.path.exists(finished_dir):
|
94 |
+
for category_dir in glob.glob(os.path.join(finished_dir, "*")):
|
95 |
+
if os.path.isdir(category_dir):
|
96 |
+
for case_file in glob.glob(os.path.join(category_dir, "*.json")):
|
97 |
+
try:
|
98 |
+
with open(case_file, 'r', encoding='utf-8') as f:
|
99 |
+
case_data = json.load(f)
|
100 |
+
notes = "\n".join(
|
101 |
+
f"{k}: {v}" for k, v in case_data.items() if k.startswith("input")
|
102 |
+
)
|
103 |
+
docs.append(Document(
|
104 |
+
page_content=f"""
|
105 |
+
PATIENT CASE: {Path(case_file).stem}
|
106 |
+
Category: {Path(category_dir).name}
|
107 |
+
Notes: {notes}
|
108 |
+
""",
|
109 |
+
metadata={"source": case_file, "type": "patient_case"}
|
110 |
+
))
|
111 |
+
except Exception as e:
|
112 |
+
st.warning(f"Error loading case file {case_file}: {str(e)}")
|
113 |
+
else:
|
114 |
+
st.warning(f"Finished directory not found at {finished_dir}")
|
115 |
+
|
116 |
+
# If no documents were loaded, add a sample document for testing
|
117 |
+
if not docs:
|
118 |
+
st.warning("No clinical data files found. Using sample data for demonstration.")
|
119 |
docs.append(Document(
|
120 |
+
page_content="""SAMPLE CLINICAL DATA: This is sample data for demonstration purposes.
|
121 |
+
This application requires clinical data files to be present in the correct directories.
|
122 |
+
Please ensure the Diagnosis_flowchart and Finished directories exist with proper JSON files.""",
|
123 |
+
metadata={"source": "sample", "type": "sample"}
|
124 |
))
|
125 |
+
except Exception as e:
|
126 |
+
st.error(f"Error loading clinical data: {str(e)}")
|
127 |
+
# Add a fallback document
|
128 |
+
docs.append(Document(
|
129 |
+
page_content="Error loading clinical data. This is a fallback document for demonstration purposes.",
|
130 |
+
metadata={"source": "error", "type": "error"}
|
131 |
+
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
return docs
|
133 |
|
134 |
def build_vectorstore():
|
|
|
147 |
|
148 |
def run_rag_chat(query, vectorstore):
|
149 |
"""Run the Retrieval-Augmented Generation (RAG) for clinical questions"""
|
150 |
+
try:
|
151 |
+
retriever = vectorstore.as_retriever()
|
|
|
|
|
152 |
|
153 |
+
prompt_template = ChatPromptTemplate.from_template("""
|
154 |
+
You are a clinical assistant AI. Based on the following clinical context, provide a reasoned and medically sound answer to the question.
|
|
|
155 |
|
156 |
+
<context>
|
157 |
+
{context}
|
158 |
+
</context>
|
159 |
|
160 |
+
Question: {input}
|
|
|
161 |
|
162 |
+
Answer:
|
163 |
+
""")
|
164 |
|
165 |
+
retrieved_docs = retriever.invoke(query, k=3)
|
166 |
+
retrieved_context = "\n".join([doc.page_content for doc in retrieved_docs])
|
|
|
|
|
167 |
|
168 |
+
# Create document chain first
|
169 |
+
document_chain = create_stuff_documents_chain(llm, prompt_template)
|
170 |
+
|
171 |
+
# Then create retrieval chain
|
172 |
+
chain = create_retrieval_chain(retriever, document_chain)
|
173 |
|
174 |
+
# Invoke the chain
|
175 |
+
response = chain.invoke({"input": query})
|
176 |
+
|
177 |
+
# Add retrieved documents to response for transparency
|
178 |
+
response["context"] = retrieved_docs
|
179 |
+
|
180 |
+
return response
|
181 |
+
except Exception as e:
|
182 |
+
st.error(f"Error in RAG processing: {str(e)}")
|
183 |
+
# Return a fallback response
|
184 |
+
return {
|
185 |
+
"answer": f"I encountered an error processing your query: {str(e)}",
|
186 |
+
"context": [],
|
187 |
+
"input": query
|
188 |
+
}
|
189 |
|
190 |
def calculate_hit_rate(retriever, query, expected_docs, k=3):
|
191 |
"""Calculate the hit rate for top-k retrieved documents"""
|