Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,038 Bytes
6f30c97 c6c3b32 6f30c97 c6c3b32 6f30c97 c308064 6f30c97 c308064 6f30c97 c308064 6f30c97 c308064 6f30c97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import spaces
import os
import time
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, list_repo_files, login
from src_inference.pipeline import FluxPipeline
from src_inference.lora_helper import set_single_lora
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
BASE_PATH = "black-forest-labs/FLUX.1-dev"
LOCAL_LORA_DIR = "./LoRAs"
CUSTOM_LORA_DIR = "./Custom_LoRAs"
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)
print("downloading OmniConsistency base LoRA …")
omni_consistency_path = hf_hub_download(
repo_id="showlab/OmniConsistency",
filename="OmniConsistency.safetensors",
local_dir="./Model"
)
print("loading base pipeline …")
pipe = FluxPipeline.from_pretrained(
BASE_PATH, torch_dtype=torch.bfloat16
).to("cuda")
set_single_lora(pipe.transformer, omni_consistency_path,
lora_weights=[1], cond_size=512)
def download_all_loras():
lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
for name in lora_names:
hf_hub_download(
repo_id="showlab/OmniConsistency",
filename=f"LoRAs/{name}_rank128_bf16.safetensors",
local_dir=LOCAL_LORA_DIR,
)
download_all_loras()
def clear_cache(transformer):
for _, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
@spaces.GPU()
def generate_image(
lora_name,
custom_repo_id,
custom_weight_name,
prompt,
uploaded_image,
width, height,
guidance_scale,
num_inference_steps,
seed
):
width, height = int(width), int(height)
generator = torch.Generator("cpu").manual_seed(seed)
if custom_repo_id and custom_repo_id.strip():
repo_id = custom_repo_id.strip()
try:
lora_path = hf_hub_download(
repo_id=repo_id,
filename=custom_weight_name,
local_dir=CUSTOM_LORA_DIR,
)
except Exception as e:
raise gr.Error(f"Load custom LoRA failed: {e}")
else:
lora_path = os.path.join(
f"{LOCAL_LORA_DIR}/LoRAs", f"{lora_name}_rank128_bf16.safetensors"
)
pipe.unload_lora_weights()
try:
pipe.load_lora_weights(
os.path.dirname(lora_path),
weight_name=os.path.basename(lora_path)
)
except Exception as e:
raise gr.Error(f"Load LoRA failed: {e}")
spatial_image = [uploaded_image.convert("RGB")]
subject_images = []
start = time.time()
out_img = pipe(
prompt,
height=(height // 8) * 8,
width=(width // 8) * 8,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=generator,
spatial_images=spatial_image,
subject_images=subject_images,
cond_size=512,
).images[0]
print(f"inference time: {time.time()-start:.2f}s")
clear_cache(pipe.transformer)
return uploaded_image, out_img
# =============== Gradio UI ===============
def create_interface():
demo_lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
def update_trigger_word(lora_name, prompt):
for name in demo_lora_names:
trigger = " ".join(name.split("_")) + " style,"
prompt = prompt.replace(trigger, "")
new_trigger = " ".join(lora_name.split("_"))+ " style,"
return new_trigger + prompt
header = """
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/showlab/OmniConsistency"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown("# OmniConsistency LoRA Image Generation")
gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
gr.HTML(header)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Image")
prompt_box = gr.Textbox(label="Prompt",
value="3D Chibi style,",
info="Remember to include the necessary trigger words if you're using a custom LoRA."
)
lora_dropdown = gr.Dropdown(
demo_lora_names, label="Select built-in LoRA")
custom_repo_box = gr.Textbox(
label="Enter Custom LoRA repo",
placeholder="LoRA Hugging Face path (e.g., 'username/repo_name')",
info="If you want to use a custom LoRA, enter its Hugging Face repo ID here and built-in LoRA will be Overridden. Leave empty to use built-in LoRAs. [Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)"
)
custom_weight_name = gr.Textbox(label="Enter Custom LoRA weight name",)
gen_btn = gr.Button("Generate")
with gr.Column(scale=1):
output_image = gr.ImageSlider(label="Generated Image")
with gr.Accordion("Advanced Options", open=False):
height_box = gr.Textbox(value="1024", label="Height")
width_box = gr.Textbox(value="1024", label="Width")
guidance_slider = gr.Slider(
0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
steps_slider = gr.Slider(
1, 50, value=25, step=1, label="Inference Steps")
seed_slider = gr.Slider(
1, 2_147_483_647, value=42, step=1, label="Seed")
lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown,prompt_box],
outputs=prompt_box)
gen_btn.click(
fn=generate_image,
inputs=[lora_dropdown, custom_repo_box, custom_weight_name, prompt_box, image_input,
width_box, height_box, guidance_slider, steps_slider, seed_slider],
outputs=output_image
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(ssr_mode=False)
|