Spaces:
Runtime error
Runtime error
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# Initialize the model and processor | |
model_name = "Qwen/Qwen2-VL-2B-Instruct" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Qwen2VLForConditionalGeneration.from_pretrained(model_name).to(device) | |
processor = AutoProcessor.from_pretrained(model_name) | |
# Load the image from URL | |
image_url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg" | |
response = requests.get(image_url) | |
img = Image.open(BytesIO(response.content)) | |
# Automatically preprocess the image and text input using the processor | |
text_input = "Describe this image." | |
# The processor automatically handles resizing, normalization, and tokenization | |
inputs = processor( | |
images=img, | |
text=text_input, | |
return_tensors="pt", | |
padding=True, # Automatically pad to match model input size | |
) | |
# Check the number of tokens generated by the processor and the shape of inputs | |
print("Input tokens:", inputs.input_ids.shape) | |
print("Image features shape:", inputs.pixel_values.shape) | |
# Ensure image and text are properly tokenized and features align | |
assert inputs.input_ids.shape[1] > 0, "No tokens generated for text input!" | |
assert inputs.pixel_values.shape[0] > 0, "No features generated for the image!" | |
# Move inputs to the device (either GPU or CPU) | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
# Inference | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
# Decode the output | |
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
print(output_text) | |