File size: 8,242 Bytes
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import gc
import os.path as osp
import os
import sys
import warnings

import gradio as gr

warnings.filterwarnings('ignore')

# Model
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
import wan
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
from wan.utils.utils import cache_video

# Global Var
prompt_expander = None
wan_flf2v_720P = None


# Button Func
def load_model(value):
    global wan_flf2v_720P

    if value == '------':
        print("No model loaded")
        return '------'

    if value == '720P':
        if args.ckpt_dir_720p is None:
            print("Please specify the checkpoint directory for 720P model")
            return '------'
        if wan_flf2v_720P is not None:
            pass
        else:
            gc.collect()

            print("load 14B-720P flf2v model...", end='', flush=True)
            cfg = WAN_CONFIGS['flf2v-14B']
            wan_flf2v_720P = wan.WanFLF2V(
                config=cfg,
                checkpoint_dir=args.ckpt_dir_720p,
                device_id=0,
                rank=0,
                t5_fsdp=False,
                dit_fsdp=False,
                use_usp=False,
            )
            print("done", flush=True)
            return '720P'
    return value


def prompt_enc(prompt, img_first, img_last, tar_lang):
    print('prompt extend...')
    if img_first is None or img_last is None:
        print('Please upload the first and last frames')
        return prompt
    global prompt_expander
    prompt_output = prompt_expander(
        prompt, image=[img_first, img_last], tar_lang=tar_lang.lower())
    if prompt_output.status == False:
        return prompt
    else:
        return prompt_output.prompt


def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
                   guide_scale, shift_scale, seed, n_prompt):

    if resolution == '------':
        print(
            'Please specify the resolution ckpt dir or specify the resolution'
        )
        return None

    else:
        if resolution == '720P':
            global wan_flf2v_720P
            video = wan_flf2v_720P.generate(
                flf2vid_prompt,
                flf2vid_image_first,
                flf2vid_image_last,
                max_area=MAX_AREA_CONFIGS['720*1280'],
                shift=shift_scale,
                sampling_steps=sd_steps,
                guide_scale=guide_scale,
                n_prompt=n_prompt,
                seed=seed,
                offload_model=True)
            pass
        else:
            print(
                'Sorry, currently only 720P is supported.'
            )
            return None

        cache_video(
            tensor=video[None],
            save_file="example.mp4",
            fps=16,
            nrow=1,
            normalize=True,
            value_range=(-1, 1))

        return "example.mp4"


# Interface
def gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("""
                    <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
                        Wan2.1 (FLF2V-14B)
                    </div>
                    <div style="text-align: center; font-size: 16px; font-weight: normal; margin-bottom: 20px;">
                        Wan: Open and Advanced Large-Scale Video Generative Models.
                    </div>
                    """)

        with gr.Row():
            with gr.Column():
                resolution = gr.Dropdown(
                    label='Resolution',
                    choices=['------', '720P'],
                    value='------')
                flf2vid_image_first = gr.Image(
                    type="pil",
                    label="Upload First Frame",
                    elem_id="image_upload",
                )
                flf2vid_image_last = gr.Image(
                    type="pil",
                    label="Upload Last Frame",
                    elem_id="image_upload",
                )
                flf2vid_prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Describe the video you want to generate",
                )
                tar_lang = gr.Radio(
                    choices=["ZH", "EN"],
                    label="Target language of prompt enhance",
                    value="ZH")
                run_p_button = gr.Button(value="Prompt Enhance")

                with gr.Accordion("Advanced Options", open=True):
                    with gr.Row():
                        sd_steps = gr.Slider(
                            label="Diffusion steps",
                            minimum=1,
                            maximum=1000,
                            value=50,
                            step=1)
                        guide_scale = gr.Slider(
                            label="Guide scale",
                            minimum=0,
                            maximum=20,
                            value=5.0,
                            step=1)
                    with gr.Row():
                        shift_scale = gr.Slider(
                            label="Shift scale",
                            minimum=0,
                            maximum=20,
                            value=5.0,
                            step=1)
                        seed = gr.Slider(
                            label="Seed",
                            minimum=-1,
                            maximum=2147483647,
                            step=1,
                            value=-1)
                    n_prompt = gr.Textbox(
                        label="Negative Prompt",
                        placeholder="Describe the negative prompt you want to add"
                    )

                run_flf2v_button = gr.Button("Generate Video")

            with gr.Column():
                result_gallery = gr.Video(
                    label='Generated Video', interactive=False, height=600)

        resolution.input(
            fn=load_model, inputs=[resolution], outputs=[resolution])

        run_p_button.click(
            fn=prompt_enc,
            inputs=[flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, tar_lang],
            outputs=[flf2vid_prompt])

        run_flf2v_button.click(
            fn=flf2v_generation,
            inputs=[
                flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
                guide_scale, shift_scale, seed, n_prompt
            ],
            outputs=[result_gallery],
        )

    return demo


# Main
def _parse_args():
    parser = argparse.ArgumentParser(
        description="Generate a video from a text prompt or image using Gradio")
    parser.add_argument(
        "--ckpt_dir_720p",
        type=str,
        default=None,
        help="The path to the checkpoint directory.")
    parser.add_argument(
        "--prompt_extend_method",
        type=str,
        default="local_qwen",
        choices=["dashscope", "local_qwen"],
        help="The prompt extend method to use.")
    parser.add_argument(
        "--prompt_extend_model",
        type=str,
        default=None,
        help="The prompt extend model to use.")

    args = parser.parse_args()
    assert args.ckpt_dir_720p is not None, "Please specify the checkpoint directory."

    return args


if __name__ == '__main__':
    args = _parse_args()

    print("Step1: Init prompt_expander...", end='', flush=True)
    if args.prompt_extend_method == "dashscope":
        prompt_expander = DashScopePromptExpander(
            model_name=args.prompt_extend_model, is_vl=True)
    elif args.prompt_extend_method == "local_qwen":
        prompt_expander = QwenPromptExpander(
            model_name=args.prompt_extend_model, is_vl=True, device=0)
    else:
        raise NotImplementedError(
            f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
    print("done", flush=True)

    demo = gradio_interface()
    demo.launch(server_name="0.0.0.0", share=False, server_port=7860)