Víctor Sáez
error
c2f455f
raw
history blame
11.6 kB
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import DetrImageProcessor, DetrForObjectDetection
# Only import pipeline if translation is enabled
ENABLE_TRANSLATION = False # Cambia a True solo si puedes cargar modelos Helsinki localmente
if ENABLE_TRANSLATION:
from transformers import pipeline
# Global variables
current_model = None
current_processor = None
current_model_name = None
available_models = {
"DETR ResNet-50": "facebook/detr-resnet-50",
"DETR ResNet-101": "facebook/detr-resnet-101",
"DETR DC5": "facebook/detr-resnet-50-dc5",
"DETR ResNet-50 Face Only": "esraakh/detr_fine_tune_face_detection_final"
}
def load_model(model_key):
global current_model, current_processor, current_model_name
model_name = available_models[model_key]
if current_model_name != model_name:
print(f"Loading model: {model_name}")
current_processor = DetrImageProcessor.from_pretrained(model_name)
current_model = DetrForObjectDetection.from_pretrained(model_name)
current_model_name = model_name
return current_model, current_processor
def get_font(size=12):
try:
return ImageFont.truetype("arial.ttf", size=size)
except:
return ImageFont.load_default()
translations = {
"English": {
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
"input_label": "Input Image",
"output_label": "Detected Objects",
"dropdown_label": "Label Language",
"dropdown_detection_model_label": "Detection Model",
"threshold_label": "Detection Threshold",
"button": "Detect Objects",
"info_label": "Detection Info",
"model_fast": "General Objects (fast)",
"model_precision": "General Objects (high precision)",
"model_small": "Small Objects/Details (slow)",
"model_faces": "Face Detection (people only)"
},
"Spanish": {
"title": "## Aplicación Mejorada de Detección de Objetos\nSube una imagen para detectar objetos usando varios modelos DETR.",
"input_label": "Imagen de entrada",
"output_label": "Objetos detectados",
"dropdown_label": "Idioma de las etiquetas",
"dropdown_detection_model_label": "Modelo de detección",
"threshold_label": "Umbral de detección",
"button": "Detectar objetos",
"info_label": "Información de detección",
"model_fast": "Objetos generales (rápido)",
"model_precision": "Objetos generales (precisión alta)",
"model_small": "Objetos pequeños/detalles (lento)",
"model_faces": "Detección de caras (solo personas)"
},
"French": {
"title": "## Application Améliorée de Détection d'Objets\nTéléchargez une image pour détecter des objets avec divers modèles DETR.",
"input_label": "Image d'entrée",
"output_label": "Objets détectés",
"dropdown_label": "Langue des étiquettes",
"dropdown_detection_model_label": "Modèle de détection",
"threshold_label": "Seuil de détection",
"button": "Détecter les objets",
"info_label": "Information de détection",
"model_fast": "Objets généraux (rapide)",
"model_precision": "Objets généraux (haute précision)",
"model_small": "Petits objets/détails (lent)",
"model_faces": "Détection de visages (personnes uniquement)"
}
}
def t(language, key):
return translations.get(language, translations["English"]).get(key, key)
def get_translated_model_choices(language):
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
translated_choices = []
for model_key in available_models.keys():
if model_key in model_mapping:
translation_key = model_mapping[model_key]
translated_name = t(language, translation_key)
else:
translated_name = model_key
translated_choices.append(translated_name)
return translated_choices
def get_model_key_from_translation(translated_name, language):
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
for model_key, translation_key in model_mapping.items():
if t(language, translation_key) == translated_name:
return model_key
if translated_name in available_models:
return translated_name
return "DETR ResNet-50"
# Translation logic (only if ENABLE_TRANSLATION and model is local)
translation_cache = {}
def translate_label(language_label, label):
if language_label == "English" or not ENABLE_TRANSLATION:
return label
cache_key = f"{language_label}_{label}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# Dummy fallback in Spaces, or if not preloaded, just warn
translation_cache[cache_key] = f"{label} (no translation)"
return translation_cache[cache_key]
def detect_objects(image, language_selector, translated_model_selector, threshold):
try:
if image is None:
return None, "Please upload an image before detecting objects."
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
model, processor = load_model(model_selector)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(
outputs, threshold=threshold, target_sizes=target_sizes
)[0]
image_with_boxes = image.copy()
draw = ImageDraw.Draw(image_with_boxes)
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"
colors = {
'high': 'red',
'medium': 'orange',
'low': 'yellow'
}
detected_objects = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
confidence = score.item()
box = [round(x, 2) for x in box.tolist()]
if confidence > 0.8:
color = colors['high']
elif confidence > 0.5:
color = colors['medium']
else:
color = colors['low']
draw.rectangle(box, outline=color, width=3)
label_text = model.config.id2label[label.item()]
translated_label = translate_label(language_selector, label_text)
display_text = f"{translated_label}: {round(confidence, 3)}"
detected_objects.append({
'label': label_text,
'translated': translated_label,
'confidence': confidence,
'box': box
})
try:
image_width = image.size[0]
font_size = max(image_width // 40, 12)
font = get_font(font_size)
text_bbox = draw.textbbox((0, 0), display_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
except:
font = get_font(12)
text_width = 50
text_height = 20
text_bg = [
box[0], box[1] - text_height - 4,
box[0] + text_width + 4, box[1]
]
draw.rectangle(text_bg, fill="black")
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)
if detected_objects:
detection_info += "Objects found:\n"
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
else:
detection_info += "No objects detected. Try lowering the threshold."
return image_with_boxes, detection_info
except Exception as e:
import traceback
print("ERROR EN DETECT_OBJECTS:", e)
traceback.print_exc()
return None, f"Error detecting objects: {e}"
def build_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
title = gr.Markdown(t("English", "title"))
with gr.Row():
with gr.Column(scale=1):
language_selector = gr.Dropdown(
choices=["English", "Spanish", "French"],
value="English",
label=t("English", "dropdown_label")
)
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=get_translated_model_choices("English"),
value=t("English", "model_fast"),
label=t("English", "dropdown_detection_model_label")
)
with gr.Column(scale=1):
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
value=0.5,
step=0.05,
label=t("English", "threshold_label")
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label=t("English", "input_label"))
button = gr.Button(t("English", "button"), variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label=t("English", "output_label"))
detection_info = gr.Textbox(
label=t("English", "info_label"),
lines=10,
max_lines=15
)
def update_interface(selected_language):
translated_choices = get_translated_model_choices(selected_language)
default_model = t(selected_language, "model_fast")
return [
gr.update(value=t(selected_language, "title")),
gr.update(label=t(selected_language, "dropdown_label")),
gr.update(
choices=translated_choices,
value=default_model,
label=t(selected_language, "dropdown_detection_model_label")
),
gr.update(label=t(selected_language, "threshold_label")),
gr.update(label=t(selected_language, "input_label")),
gr.update(value=t(selected_language, "button")),
gr.update(label=t(selected_language, "output_label")),
gr.update(label=t(selected_language, "info_label"))
]
language_selector.change(
fn=update_interface,
inputs=language_selector,
outputs=[title, language_selector, model_selector, threshold_slider,
input_image, button, output_image, detection_info],
queue=False
)
button.click(
fn=detect_objects,
inputs=[input_image, language_selector, model_selector, threshold_slider],
outputs=[output_image, detection_info]
)
return app
load_model("DETR ResNet-50")
if __name__ == "__main__":
app = build_app()
app.launch()