Spaces:
Running
Running
import gradio as gr | |
from PIL import Image, ImageDraw | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
# Load DETR model and processor from Hugging Face | |
model_name = "facebook/detr-resnet-50" | |
processor = DetrImageProcessor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
# Main function: takes an image and returns it with boxes and labels | |
def detect_objects(image): | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Convert model output to usable detection results | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection( | |
outputs, threshold=0.9, target_sizes=target_sizes | |
)[0] | |
# Draw bounding boxes and labels on a copy of the image | |
image_with_boxes = image.copy() | |
draw = ImageDraw.Draw(image_with_boxes) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(x, 2) for x in box.tolist()] | |
draw.rectangle(box, outline="red", width=3) | |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}" | |
draw.text((box[0], box[1]), label_text, fill="white") | |
return image_with_boxes | |
# Gradio interface | |
app = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image() | |
) | |
# Run app | |
if __name__ == "__main__": | |
app.launch() | |