Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from pathlib import Path | |
import transformers | |
import warnings | |
import traceback | |
import datetime | |
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*") | |
# Global variables to cache models | |
current_model = None | |
current_processor = None | |
current_model_name = None | |
# Global debug state | |
debug_info = {"last_error": "", "step": "", "language": "", "timestamp": ""} | |
# Available models with better selection | |
available_models = { | |
"DETR ResNet-50": "facebook/detr-resnet-50", | |
"DETR ResNet-101": "facebook/detr-resnet-101", | |
"DETR DC5": "facebook/detr-resnet-50-dc5", | |
"DETR ResNet-50 Face Only": "esraakh/detr_fine_tune_face_detection_final" | |
} | |
def load_model(model_key): | |
"""Load model and processor based on selected model key""" | |
global current_model, current_processor, current_model_name, debug_info | |
model_name = available_models[model_key] | |
# Only load if it's a different model | |
if current_model_name != model_name: | |
debug_info["step"] = f"Loading model: {model_name}" | |
print(f"Loading model: {model_name}") | |
current_processor = DetrImageProcessor.from_pretrained(model_name) | |
current_model = DetrForObjectDetection.from_pretrained(model_name) | |
current_model_name = model_name | |
print(f"Model loaded: {model_name}") | |
print(f"Available labels: {list(current_model.config.id2label.values())}") | |
debug_info["step"] = f"Model loaded successfully: {model_name}" | |
return current_model, current_processor | |
# Load font | |
font_path = Path("assets/fonts/arial.ttf") | |
if not font_path.exists(): | |
print(f"Font file {font_path} not found. Using default font.") | |
font = ImageFont.load_default() | |
else: | |
font = ImageFont.truetype(str(font_path), size=100) | |
# Set up translations for the app | |
translations = { | |
"English": { | |
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.", | |
"input_label": "Input Image", | |
"output_label": "Detected Objects", | |
"dropdown_label": "Label Language", | |
"dropdown_detection_model_label": "Detection Model", | |
"threshold_label": "Detection Threshold", | |
"button": "Detect Objects", | |
"info_label": "Detection Info", | |
"error_label": "Error Messages", | |
"debug_label": "Debug Status", | |
"debug_button": "Show Debug Status", | |
"model_fast": "General Objects (fast)", | |
"model_precision": "General Objects (high precision)", | |
"model_small": "Small Objects/Details (slow)", | |
"model_faces": "Face Detection (people only)" | |
}, | |
"Spanish": { | |
"title": "## Aplicación Mejorada de Detección de Objetos\nSube una imagen para detectar objetos usando varios modelos DETR.", | |
"input_label": "Imagen de entrada", | |
"output_label": "Objetos detectados", | |
"dropdown_label": "Idioma de las etiquetas", | |
"dropdown_detection_model_label": "Modelo de detección", | |
"threshold_label": "Umbral de detección", | |
"button": "Detectar objetos", | |
"info_label": "Información de detección", | |
"error_label": "Mensajes de error", | |
"debug_label": "Estado de depuración", | |
"debug_button": "Mostrar estado de depuración", | |
"model_fast": "Objetos generales (rápido)", | |
"model_precision": "Objetos generales (precisión alta)", | |
"model_small": "Objetos pequeños/detalles (lento)", | |
"model_faces": "Detección de caras (solo personas)" | |
}, | |
"French": { | |
"title": "## Application Améliorée de Détection d'Objets\nTéléchargez une image pour détecter des objets avec divers modèles DETR.", | |
"input_label": "Image d'entrée", | |
"output_label": "Objets détectés", | |
"dropdown_label": "Langue des étiquettes", | |
"dropdown_detection_model_label": "Modèle de détection", | |
"threshold_label": "Seuil de détection", | |
"button": "Détecter les objets", | |
"info_label": "Information de détection", | |
"error_label": "Messages d'erreur", | |
"debug_label": "État de débogage", | |
"debug_button": "Afficher l'état de débogage", | |
"model_fast": "Objets généraux (rapide)", | |
"model_precision": "Objets généraux (haute précision)", | |
"model_small": "Petits objets/détails (lent)", | |
"model_faces": "Détection de visages (personnes uniquement)" | |
} | |
} | |
def t(language, key): | |
return translations.get(language, translations["English"]).get(key, key) | |
def get_translated_model_choices(language): | |
"""Get model choices translated to the selected language""" | |
global debug_info | |
debug_info["step"] = f"Translating model choices for {language}" | |
model_mapping = { | |
"DETR ResNet-50": "model_fast", | |
"DETR ResNet-101": "model_precision", | |
"DETR DC5": "model_small", | |
"DETR ResNet-50 Face Only": "model_faces" | |
} | |
translated_choices = [] | |
for model_key in available_models.keys(): | |
if model_key in model_mapping: | |
translation_key = model_mapping[model_key] | |
translated_name = t(language, translation_key) | |
else: | |
translated_name = model_key | |
translated_choices.append(translated_name) | |
debug_info["step"] = f"Model choices translated: {translated_choices}" | |
return translated_choices | |
def get_model_key_from_translation(translated_name, language): | |
"""Get the original model key from translated name""" | |
model_mapping = { | |
"DETR ResNet-50": "model_fast", | |
"DETR ResNet-101": "model_precision", | |
"DETR DC5": "model_small", | |
"DETR ResNet-50 Face Only": "model_faces" | |
} | |
# Reverse lookup | |
for model_key, translation_key in model_mapping.items(): | |
if t(language, translation_key) == translated_name: | |
return model_key | |
# If not found, try direct match | |
if translated_name in available_models: | |
return translated_name | |
# Default fallback | |
return "DETR ResNet-50" | |
def get_helsinki_model(language_label): | |
"""Returns the Helsinki-NLP model name for translating from English to the selected language.""" | |
lang_map = { | |
"Spanish": "es", | |
"French": "fr", | |
"English": "en" | |
} | |
target = lang_map.get(language_label) | |
if not target or target == "en": | |
return None | |
return f"Helsinki-NLP/opus-mt-en-{target}" | |
# Translation cache | |
translation_cache = {} | |
def translate_label(language_label, label): | |
"""Translates the given label to the target language.""" | |
# Check cache first | |
cache_key = f"{language_label}_{label}" | |
if cache_key in translation_cache: | |
return translation_cache[cache_key] | |
model_name = get_helsinki_model(language_label) | |
if not model_name: | |
return label | |
try: | |
translator = transformers.pipeline("translation", model=model_name) | |
result = translator(label, max_length=40) | |
translated = result[0]['translation_text'] | |
# Cache the result | |
translation_cache[cache_key] = translated | |
return translated | |
except Exception as e: | |
print(f"Translation error (429 or other): {e}") | |
return label # Return original if translation fails | |
def detect_objects(image, language_selector, translated_model_selector, threshold): | |
"""Enhanced object detection with adjustable threshold and better info""" | |
global debug_info | |
try: | |
debug_info["step"] = "Starting object detection" | |
debug_info["timestamp"] = str(datetime.datetime.now()) | |
# Get the actual model key from the translated name | |
model_selector = get_model_key_from_translation(translated_model_selector, language_selector) | |
debug_info["step"] = f"Model key resolved: {model_selector}" | |
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}") | |
# Load the selected model | |
debug_info["step"] = "Loading model" | |
model, processor = load_model(model_selector) | |
# Process the image | |
debug_info["step"] = "Processing image with model" | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Convert model output to usable detection results with custom threshold | |
debug_info["step"] = "Post-processing results" | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection( | |
outputs, threshold=threshold, target_sizes=target_sizes | |
)[0] | |
# Create a copy of the image for drawing | |
debug_info["step"] = "Drawing bounding boxes" | |
image_with_boxes = image.copy() | |
draw = ImageDraw.Draw(image_with_boxes) | |
# Detection info | |
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n" | |
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n" | |
# Colors for different confidence levels | |
colors = { | |
'high': 'red', # > 0.8 | |
'medium': 'orange', # 0.5-0.8 | |
'low': 'yellow' # < 0.5 | |
} | |
detected_objects = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
confidence = score.item() | |
box = [round(x, 2) for x in box.tolist()] | |
# Choose color based on confidence | |
if confidence > 0.8: | |
color = colors['high'] | |
elif confidence > 0.5: | |
color = colors['medium'] | |
else: | |
color = colors['low'] | |
# Draw bounding box | |
draw.rectangle(box, outline=color, width=3) | |
# Prepare label text | |
label_text = model.config.id2label[label.item()] | |
translated_label = translate_label(language_selector, label_text) | |
display_text = f"{translated_label}: {round(confidence, 3)}" | |
# Store detection info | |
detected_objects.append({ | |
'label': label_text, | |
'translated': translated_label, | |
'confidence': confidence, | |
'box': box | |
}) | |
# Calculate text position and size | |
try: | |
text_bbox = draw.textbbox((0, 0), display_text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
except: | |
# Fallback for older PIL versions | |
text_width, text_height = draw.textsize(display_text, font=font) | |
# Draw text background | |
text_bg = [ | |
box[0], box[1] - text_height - 4, | |
box[0] + text_width + 4, box[1] | |
] | |
draw.rectangle(text_bg, fill="black") | |
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font) | |
# Create detailed detection info | |
if detected_objects: | |
detection_info += "Objects found:\n" | |
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True): | |
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n" | |
else: | |
detection_info += "No objects detected. Try lowering the threshold." | |
debug_info["step"] = "Detection completed successfully" | |
debug_info["last_error"] = "" | |
return image_with_boxes, detection_info, "" | |
except Exception as e: | |
error_message = f"Error in object detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}" | |
debug_info["last_error"] = error_message | |
debug_info["step"] = f"ERROR in detection: {str(e)}" | |
print(error_message) | |
return image if image else None, "Detection failed. See error panel below.", error_message | |
def update_interface(selected_language): | |
global debug_info | |
debug_info["language"] = selected_language | |
debug_info["timestamp"] = str(datetime.datetime.now()) | |
debug_info["step"] = "Starting language interface update" | |
try: | |
translated_choices = get_translated_model_choices(selected_language) | |
default_model = t(selected_language, "model_fast") | |
updates = [ | |
gr.update(value=t(selected_language, "title")), | |
# gr.update(label=t(selected_language, "dropdown_label")), # <-- ELIMINADA ESTA LÍNEA | |
gr.update( | |
choices=translated_choices, | |
value=default_model, | |
label=t(selected_language, "dropdown_detection_model_label") | |
), | |
gr.update(label=t(selected_language, "threshold_label")), | |
gr.update(label=t(selected_language, "input_label")), | |
gr.update(value=t(selected_language, "button")), | |
gr.update(label=t(selected_language, "output_label")), | |
gr.update(label=t(selected_language, "info_label")), | |
gr.update(label=t(selected_language, "error_label"), value="", visible=False), | |
gr.update(label=t(selected_language, "debug_label")), | |
gr.update(value=t(selected_language, "debug_button")) | |
] | |
debug_info["step"] = "Interface update completed successfully" | |
debug_info["last_error"] = "" | |
return updates | |
except Exception as e: | |
error_msg = f"ERROR in interface update at step '{debug_info['step']}':\n{str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
debug_info["last_error"] = error_msg | |
debug_info["step"] = f"FAILED: {str(e)}" | |
# Safe fallback | |
safe_updates = [gr.update() for _ in range(10)] | |
return safe_updates | |
def get_debug_status(): | |
"""Get current debug status for display""" | |
global debug_info | |
status = f"""🔍 DEBUG STATUS: | |
Current Language: {debug_info.get('language', 'N/A')} | |
Last Timestamp: {debug_info.get('timestamp', 'N/A')} | |
Current Step: {debug_info.get('step', 'N/A')} | |
Last Error: {debug_info.get('last_error', 'None')} | |
Available Models: {list(available_models.keys())} | |
Current Model: {current_model_name or 'None loaded'} | |
Translation Cache Size: {len(translation_cache)} | |
""" | |
return status | |
def safe_detect_objects(image, language_selector, translated_model_selector, threshold): | |
"""Safe wrapper for object detection with error handling""" | |
global debug_info | |
if image is None: | |
debug_info["step"] = "No image provided" | |
return None, "Please upload an image first.", "" | |
try: | |
result_image, info, error = detect_objects(image, language_selector, translated_model_selector, threshold) | |
# Update error panel visibility based on whether there's an error | |
error_visible = bool(error.strip()) | |
return ( | |
result_image, | |
info, | |
gr.update(value=error, visible=error_visible) | |
) | |
except Exception as e: | |
error_message = f"Unexpected error in detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}" | |
debug_info["last_error"] = error_message | |
debug_info["step"] = f"UNEXPECTED ERROR: {str(e)}" | |
print(error_message) | |
return ( | |
image, | |
"Detection failed due to unexpected error. See error panel below.", | |
gr.update(value=error_message, visible=True) | |
) | |
def build_app(): | |
with gr.Blocks(theme=gr.themes.Soft()) as app: | |
with gr.Row(): | |
title = gr.Markdown(t("English", "title")) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
language_selector = gr.Dropdown( | |
choices=["English", "Spanish", "French"], | |
value="English", | |
label=t("English", "dropdown_label") | |
) | |
with gr.Column(scale=1): | |
model_selector = gr.Dropdown( | |
choices=get_translated_model_choices("English"), | |
value=t("English", "model_fast"), | |
label=t("English", "dropdown_detection_model_label") | |
) | |
with gr.Column(scale=1): | |
threshold_slider = gr.Slider( | |
minimum=0.1, | |
maximum=0.95, | |
value=0.5, | |
step=0.05, | |
label=t("English", "threshold_label") | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="pil", label=t("English", "input_label")) | |
button = gr.Button(t("English", "button"), variant="primary") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label=t("English", "output_label")) | |
detection_info = gr.Textbox( | |
label=t("English", "info_label"), | |
lines=10, | |
max_lines=15 | |
) | |
# Error panel - only visible when there are errors | |
with gr.Row(): | |
error_panel = gr.Textbox( | |
label=t("English", "error_label"), | |
lines=8, | |
max_lines=20, | |
visible=False, | |
elem_classes=["error-panel"] | |
) | |
# Debug panel - always visible for debugging in HF | |
with gr.Row(): | |
debug_panel = gr.Textbox( | |
label=t("English", "debug_label"), | |
lines=10, | |
max_lines=20, | |
value="Application started - ready for debugging", | |
visible=True | |
) | |
with gr.Row(): | |
debug_button = gr.Button(t("English", "debug_button"), size="sm") | |
# Connect language change event | |
language_selector.change( | |
fn=update_interface, | |
inputs=language_selector, | |
outputs=[ | |
title, | |
# language_selector, # <-- esta línea también debes eliminarla | |
model_selector, | |
threshold_slider, | |
input_image, | |
button, | |
output_image, | |
detection_info, | |
error_panel, | |
debug_panel, | |
debug_button | |
], | |
queue=True | |
) | |
# Connect detection button click event | |
button.click( | |
fn=safe_detect_objects, | |
inputs=[input_image, language_selector, model_selector, threshold_slider], | |
outputs=[output_image, detection_info, error_panel] | |
) | |
# Connect debug button click event | |
debug_button.click( | |
fn=get_debug_status, | |
outputs=debug_panel | |
) | |
return app | |
# Initialize with default model and debug info | |
debug_info["step"] = "Initializing default model" | |
debug_info["timestamp"] = str(datetime.datetime.now()) | |
load_model("DETR ResNet-50") | |
debug_info["step"] = "Application ready" | |
# Launch the application | |
if __name__ == "__main__": | |
app = build_app() | |
app.launch() |