Spaces:
Running
Running
File size: 13,722 Bytes
221337b 6ecfb14 53e14a8 221337b 6ecfb14 2e9147d 6ecfb14 2e9147d 221337b 6ecfb14 9b802a0 2e9147d 6ecfb14 53e14a8 2e9147d 221337b 2e9147d 221337b 2e9147d 221337b 2e9147d 221337b 53e14a8 2e9147d 221337b 2e9147d 221337b 2e9147d 53e14a8 2e9147d 53e14a8 2e9147d 9b802a0 2e9147d 9b802a0 53e14a8 2e9147d 53e14a8 2e9147d 221337b 2e9147d 221337b 2e9147d 221337b 6ecfb14 2e9147d 6ecfb14 2e9147d 221337b 2e9147d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import DetrImageProcessor, DetrForObjectDetection
from pathlib import Path
import transformers
# Global variables to cache models
current_model = None
current_processor = None
current_model_name = None
# Available models with better selection
available_models = {
# DETR Models
"DETR ResNet-50": "facebook/detr-resnet-50",
"DETR ResNet-101": "facebook/detr-resnet-101",
"DETR DC5": "facebook/detr-resnet-50-dc5",
"DETR ResNet-50 Face Only": "esraakh/detr_fine_tune_face_detection_final"
}
def load_model(model_key):
"""Load model and processor based on selected model key"""
global current_model, current_processor, current_model_name
model_name = available_models[model_key]
# Only load if it's a different model
if current_model_name != model_name:
print(f"Loading model: {model_name}")
current_processor = DetrImageProcessor.from_pretrained(model_name)
current_model = DetrForObjectDetection.from_pretrained(model_name)
current_model_name = model_name
print(f"Model loaded: {model_name}")
print(f"Available labels: {list(current_model.config.id2label.values())}")
return current_model, current_processor
# Load font
font_path = Path("assets/fonts/arial.ttf")
if not font_path.exists():
print(f"Font file {font_path} not found. Using default font.")
font = ImageFont.load_default()
else:
font = ImageFont.truetype(str(font_path), size=8) # Reduced font size
# Set up translations for the app
translations = {
"English": {
"title": "## Enhanced Object Detection App\nUpload an image to detect objects using various DETR models.",
"input_label": "Input Image",
"output_label": "Detected Objects",
"dropdown_label": "Label Language",
"dropdown_detection_model_label": "Detection Model",
"threshold_label": "Detection Threshold",
"button": "Detect Objects",
"info_label": "Detection Info",
"model_fast": "General Objects (fast)",
"model_precision": "General Objects (high precision)",
"model_small": "Small Objects/Details (slow)",
"model_faces": "Face Detection (people only)"
},
"Spanish": {
"title": "## Aplicación Mejorada de Detección de Objetos\nSube una imagen para detectar objetos usando varios modelos DETR.",
"input_label": "Imagen de entrada",
"output_label": "Objetos detectados",
"dropdown_label": "Idioma de las etiquetas",
"dropdown_detection_model_label": "Modelo de detección",
"threshold_label": "Umbral de detección",
"button": "Detectar objetos",
"info_label": "Información de detección",
"model_fast": "Objetos generales (rápido)",
"model_precision": "Objetos generales (precisión alta)",
"model_small": "Objetos pequeños/detalles (lento)",
"model_faces": "Detección de caras (solo personas)"
},
"French": {
"title": "## Application Améliorée de Détection d'Objets\nTéléchargez une image pour détecter des objets avec divers modèles DETR.",
"input_label": "Image d'entrée",
"output_label": "Objets détectés",
"dropdown_label": "Langue des étiquettes",
"dropdown_detection_model_label": "Modèle de détection",
"threshold_label": "Seuil de détection",
"button": "Détecter les objets",
"info_label": "Information de détection",
"model_fast": "Objets généraux (rapide)",
"model_precision": "Objets généraux (haute précision)",
"model_small": "Petits objets/détails (lent)",
"model_faces": "Détection de visages (personnes uniquement)"
}
}
def t(language, key):
return translations.get(language, translations["English"]).get(key, key)
def get_translated_model_choices(language):
"""Get model choices translated to the selected language"""
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
translated_choices = []
for model_key in available_models.keys():
if model_key in model_mapping:
translation_key = model_mapping[model_key]
translated_name = t(language, translation_key)
else:
translated_name = model_key # Fallback to original name
translated_choices.append(translated_name)
return translated_choices
def get_model_key_from_translation(translated_name, language):
"""Get the original model key from translated name"""
model_mapping = {
"DETR ResNet-50": "model_fast",
"DETR ResNet-101": "model_precision",
"DETR DC5": "model_small",
"DETR ResNet-50 Face Only": "model_faces"
}
# Reverse lookup
for model_key, translation_key in model_mapping.items():
if t(language, translation_key) == translated_name:
return model_key
# If not found, try direct match
if translated_name in available_models:
return translated_name
# Default fallback
return "DETR ResNet-50"
def get_helsinki_model(language_label):
"""Returns the Helsinki-NLP model name for translating from English to the selected language."""
lang_map = {
"Spanish": "es",
"French": "fr",
"English": "en"
}
target = lang_map.get(language_label)
if not target or target == "en":
return None
return f"Helsinki-NLP/opus-mt-en-{target}"
# add cache for translations
translation_cache = {}
def translate_label(language_label, label):
"""Translates the given label to the target language."""
# Check cache first
cache_key = f"{language_label}_{label}"
if cache_key in translation_cache:
return translation_cache[cache_key]
model_name = get_helsinki_model(language_label)
if not model_name:
return label
try:
translator = transformers.pipeline("translation", model=model_name)
result = translator(label, max_length=40)
translated = result[0]['translation_text']
# Cache the result
translation_cache[cache_key] = translated
return translated
except Exception as e:
print(f"Translation error (429 or other): {e}")
return label # Return original if translation fails
def detect_objects(image, language_selector, translated_model_selector, threshold):
"""Enhanced object detection with adjustable threshold and better info"""
# Get the actual model key from the translated name
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")
# Load the selected model
model, processor = load_model(model_selector)
# Process the image
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# Convert model output to usable detection results with custom threshold
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(
outputs, threshold=threshold, target_sizes=target_sizes
)[0]
# Create a copy of the image for drawing
image_with_boxes = image.copy()
draw = ImageDraw.Draw(image_with_boxes)
# Detection info
detection_info = f"Detected {len(results['scores'])} objects with threshold {threshold}\n"
detection_info += f"Model: {translated_model_selector} ({model_selector})\n\n"
# Colors for different confidence levels
colors = {
'high': 'red', # > 0.8
'medium': 'orange', # 0.5-0.8
'low': 'yellow' # < 0.5
}
detected_objects = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
confidence = score.item()
box = [round(x, 2) for x in box.tolist()]
# Choose color based on confidence
if confidence > 0.8:
color = colors['high']
elif confidence > 0.5:
color = colors['medium']
else:
color = colors['low']
# Draw bounding box
draw.rectangle(box, outline=color, width=3)
# Prepare label text
label_text = model.config.id2label[label.item()]
translated_label = translate_label(language_selector, label_text)
display_text = f"{translated_label}: {round(confidence, 3)}"
# Store detection info
detected_objects.append({
'label': label_text,
'translated': translated_label,
'confidence': confidence,
'box': box
})
# Calculate text position and size
try:
image_width = image.size[0]
# Calculate the font size for drawing labels, ensuring it scales with image width but is never smaller than 50 pixels.
font_size = max(image_width // 40, 12) # Adjust font size based on image width
font = ImageFont.truetype(str(font_path), size=font_size)
text_bbox = draw.textbbox((0, 0), display_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
except:
# Fallback for older PIL versions
text_bbox = draw.textbbox((0, 0), display_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Draw text background
text_bg = [
box[0], box[1] - text_height - 4,
box[0] + text_width + 4, box[1]
]
draw.rectangle(text_bg, fill="black")
draw.text((box[0] + 2, box[1] - text_height - 2), display_text, fill="white", font=font)
# Create detailed detection info
if detected_objects:
detection_info += "Objects found:\n"
for obj in sorted(detected_objects, key=lambda x: x['confidence'], reverse=True):
detection_info += f"- {obj['translated']} ({obj['label']}): {obj['confidence']:.3f}\n"
else:
detection_info += "No objects detected. Try lowering the threshold."
return image_with_boxes, detection_info
def build_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
title = gr.Markdown(t("English", "title"))
with gr.Row():
with gr.Column(scale=1):
language_selector = gr.Dropdown(
choices=["English", "Spanish", "French"],
value="English",
label=t("English", "dropdown_label")
)
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=get_translated_model_choices("English"),
value=t("English", "model_fast"), # Default to translated "fast" option
label=t("English", "dropdown_detection_model_label")
)
with gr.Column(scale=1):
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
value=0.5, # Lowered default threshold
step=0.05,
label=t("English", "threshold_label")
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label=t("English", "input_label"))
button = gr.Button(t("English", "button"), variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label=t("English", "output_label"))
detection_info = gr.Textbox(
label=t("English", "info_label"),
lines=10,
max_lines=15
)
# Function to update interface when language changes
def update_interface(selected_language):
translated_choices = get_translated_model_choices(selected_language)
default_model = t(selected_language, "model_fast")
return [
gr.update(value=t(selected_language, "title")),
gr.update(label=t(selected_language, "dropdown_label")),
gr.update(
choices=translated_choices,
value=default_model,
label=t(selected_language, "dropdown_detection_model_label")
),
gr.update(label=t(selected_language, "threshold_label")),
gr.update(label=t(selected_language, "input_label")),
gr.update(value=t(selected_language, "button")),
gr.update(label=t(selected_language, "output_label")),
gr.update(label=t(selected_language, "info_label"))
]
# Connect language change event
language_selector.change(
fn=update_interface,
inputs=language_selector,
outputs=[title, language_selector, model_selector, threshold_slider,
input_image, button, output_image, detection_info],
queue=False
)
# Connect detection button click event
button.click(
fn=detect_objects,
inputs=[input_image, language_selector, model_selector, threshold_slider],
outputs=[output_image, detection_info]
)
return app
# Initialize with default model
load_model("DETR ResNet-50")
# Launch the application
if __name__ == "__main__":
app = build_app()
app.launch() |