Delete app.py
Browse files
app.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
from langchain_community.document_loaders import PyPDFLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain.chains import ConversationalRetrievalChain
|
7 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
-
from langchain_community.llms import HuggingFacePipeline
|
9 |
-
from langchain.chains import ConversationChain
|
10 |
-
from langchain.memory import ConversationBufferMemory
|
11 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
-
from pathlib import Path
|
13 |
-
import chromadb
|
14 |
-
from unidecode import unidecode
|
15 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
16 |
-
import transformers
|
17 |
-
import torch
|
18 |
-
import tqdm
|
19 |
-
import accelerate
|
20 |
-
import re
|
21 |
-
|
22 |
-
# Load the tokenizer and model
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased")
|
24 |
-
model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased")
|
25 |
-
|
26 |
-
# default_persist_directory = './chroma_HF/'
|
27 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
|
28 |
-
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
29 |
-
|
30 |
-
# Load PDF document and create doc splits
|
31 |
-
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
32 |
-
|
33 |
-
loaders = [PyPDFLoader(x) for x in list_file_path]
|
34 |
-
pages = []
|
35 |
-
for loader in loaders:
|
36 |
-
pages.extend(loader.load())
|
37 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
38 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
39 |
-
chunk_size = chunk_size,
|
40 |
-
chunk_overlap = chunk_overlap)
|
41 |
-
doc_splits = text_splitter.split_documents(pages)
|
42 |
-
return doc_splits
|
43 |
-
|
44 |
-
# Create vector database
|
45 |
-
def create_db(splits, collection_name):
|
46 |
-
embedding = HuggingFaceEmbeddings()
|
47 |
-
new_client = chromadb.EphemeralClient()
|
48 |
-
vectordb = Chroma.from_documents(
|
49 |
-
documents=splits,
|
50 |
-
embedding=embedding,
|
51 |
-
client=new_client,
|
52 |
-
collection_name=collection_name,
|
53 |
-
# persist_directory=default_persist_directory
|
54 |
-
)
|
55 |
-
return vectordb
|
56 |
-
|
57 |
-
|
58 |
-
# Load vector database
|
59 |
-
def load_db():
|
60 |
-
embedding = HuggingFaceEmbeddings()
|
61 |
-
vectordb = Chroma(
|
62 |
-
# persist_directory=default_persist_directory,
|
63 |
-
embedding_function=embedding)
|
64 |
-
return vectordb
|
65 |
-
|
66 |
-
|
67 |
-
# Initialize langchain LLM chain
|
68 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
69 |
-
progress(0.1, desc="Initializing HF tokenizer...")
|
70 |
-
|
71 |
-
progress(0.5, desc="Initializing HF Hub...")
|
72 |
-
|
73 |
-
llm = HuggingFaceEndpoint(
|
74 |
-
repo_id=llm_model,
|
75 |
-
temperature = temperature,
|
76 |
-
max_new_tokens = max_tokens,
|
77 |
-
top_k = top_k,
|
78 |
-
)
|
79 |
-
|
80 |
-
# Initialize conversation chain
|
81 |
-
conversation_chain = ConversationChain(
|
82 |
-
llm=llm,
|
83 |
-
conversation_buffer_memory=ConversationBufferMemory(max_memory=10),
|
84 |
-
)
|
85 |
-
|
86 |
-
return conversation_chain
|
87 |
-
|
88 |
-
|
89 |
-
# Initialize LLM
|
90 |
-
def initialize_LLM(llm_model, temperature, max_tokens, top_k, vector_db):
|
91 |
-
progress = gr.Progress()
|
92 |
-
qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress)
|
93 |
-
return qa_chain, progress
|
94 |
-
|
95 |
-
|
96 |
-
# Format chat history
|
97 |
-
def format_chat_history(message, history):
|
98 |
-
formatted_chat_history = ""
|
99 |
-
for i, (user_message, response) in enumerate(history):
|
100 |
-
formatted_chat_history += f"User: {user_message}\nAssistant: {response}\n\n"
|
101 |
-
formatted_chat_history += f"User: {message}\n"
|
102 |
-
return formatted_chat_history
|
103 |
-
|
104 |
-
|
105 |
-
# Conversation function
|
106 |
-
def conversation(qa_chain, message, history, language):
|
107 |
-
formatted_chat_history = format_chat_history(message, history)
|
108 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
109 |
-
response_answer = response["answer"]
|
110 |
-
if response_answer.find("Helpful Answer:") != -1:
|
111 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
112 |
-
# Detect language of the question if selected
|
113 |
-
if language == "Detect Language":
|
114 |
-
from langdetect import detect
|
115 |
-
language = detect(message)
|
116 |
-
# Translate response to selected language
|
117 |
-
if language != "English":
|
118 |
-
translator = googletrans.Translator()
|
119 |
-
response_answer = translator.translate(response_answer, dest=language).text
|
120 |
-
response_sources = response["source_documents"]
|
121 |
-
response_source1 = response_sources[0].page_content.strip()
|
122 |
-
response_source2 = response_sources[1].page_content.strip()
|
123 |
-
response_source3 = response_sources[2].page_content.strip()
|
124 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
125 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
126 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
127 |
-
return qa_chain, gr.update(value=""), history + [(message, response_answer)], response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
128 |
-
|
129 |
-
# Create Gradio interface
|
130 |
-
demo = gr.Blocks()
|
131 |
-
|
132 |
-
with demo:
|
133 |
-
with gr.Tab("Step 1 - Upload Document"):
|
134 |
-
uploaded_file = gr.File(label="Upload Document")
|
135 |
-
upload_btn = gr.Button("Upload")
|
136 |
-
document = gr.Textbox(label="Document Content", lines=20, container=True)
|
137 |
-
|
138 |
-
with gr.Tab("Step 2 - Create Database"):
|
139 |
-
slider_chunk_size = gr.Slider(label="Chunk Size", minimum=100, maximum=1000, value=600, step=100)
|
140 |
-
slider_chunk_overlap = gr.Slider(label="Chunk Overlap", minimum=0, maximum=500, value=50, step=50)
|
141 |
-
db_btn = gr.Button("Create Database")
|
142 |
-
vector_db = gr.Textbox(label="Vector Database", lines=20, container=True)
|
143 |
-
collection_name = gr.Textbox(label="Collection Name", lines=1, container=True)
|
144 |
-
db_progress = gr.Progress()
|
145 |
-
|
146 |
-
with gr.Tab("Step 3 - Initialize LLM"):
|
147 |
-
llm_btn = gr.Dropdown(choices=list_llm_simple, value=list_llm_simple[0], label="LLM Model")
|
148 |
-
slider_temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, value=0.7, step=0.1)
|
149 |
-
slider_maxtokens = gr.Slider(label="Max Tokens", minimum=10, maximum=500, value=200, step=50)
|
150 |
-
slider_topk = gr.Slider(label="Top K", minimum=1, maximum=10, value=5, step=1)
|
151 |
-
qachain_btn = gr.Button("Initialize LLM")
|
152 |
-
qa_chain = gr.Textbox(label="QA Chain", lines=20, container=True)
|
153 |
-
db_progress = gr.Progress()
|
154 |
-
llm_progress = gr.Progress()
|
155 |
-
|
156 |
-
with gr.Tab("Step 4 - Chatbot"):
|
157 |
-
chatbot = gr.Chatbot(height=300)
|
158 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
159 |
-
with gr.Row():
|
160 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
161 |
-
source1_page = gr.Number(label="Page", scale=1)
|
162 |
-
with gr.Row():
|
163 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
164 |
-
source2_page = gr.Number(label="Page", scale=1)
|
165 |
-
with gr.Row():
|
166 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
167 |
-
source3_page = gr.Number(label="Page", scale=1)
|
168 |
-
with gr.Row():
|
169 |
-
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
170 |
-
with gr.Row():
|
171 |
-
submit_btn = gr.Button("Submit message")
|
172 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
173 |
-
language = gr.Dropdown(choices=["English", "Detect Language"], value="English", label="Language")
|
174 |
-
|
175 |
-
# Preprocessing events
|
176 |
-
upload_btn.click(load_doc, inputs=[uploaded_file], outputs=[document])
|
177 |
-
db_btn.click(create_db, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
178 |
-
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
179 |
-
|
180 |
-
# Chatbot events
|
181 |
-
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, language], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
182 |
-
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, language], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
183 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
|
184 |
-
|
185 |
-
demo.queue().launch(debug=True)
|
186 |
-
|
187 |
-
|
188 |
-
if __name__ == "__main__":
|
189 |
-
demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|