|
import streamlit as st
|
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
|
from dotenv import load_dotenv
|
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
from llama_index.core import Settings
|
|
import os
|
|
import base64
|
|
import altair as alt
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
Settings.llm = HuggingFaceInferenceAPI(
|
|
model_name="google/gemma-1.1-7b-it",
|
|
tokenizer_name="google/gemma-1.1-7b-it",
|
|
context_window=3000,
|
|
token=os.getenv("HF_TOKEN"),
|
|
max_new_tokens=512,
|
|
generate_kwargs={"temperature": 0.1},
|
|
)
|
|
Settings.embed_model = HuggingFaceEmbedding(
|
|
model_name="BAAI/bge-small-en-v1.5"
|
|
)
|
|
|
|
|
|
PERSIST_DIR = "./db"
|
|
DATA_DIR = "data"
|
|
|
|
|
|
os.makedirs(DATA_DIR, exist_ok=True)
|
|
os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
|
|
def displayPDF(file):
|
|
with open(file, "rb") as f:
|
|
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
|
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
|
st.markdown(pdf_display, unsafe_allow_html=True)
|
|
|
|
def data_ingestion():
|
|
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
|
storage_context = StorageContext.from_defaults()
|
|
index = VectorStoreIndex.from_documents(documents)
|
|
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
|
|
|
def handle_query(query):
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
|
index = load_index_from_storage(storage_context)
|
|
chat_text_qa_msgs = [
|
|
(
|
|
"user",
|
|
"""created by vivek created for Neonflake Enterprises OPC Pvt Ltd
|
|
Context:
|
|
{context_str}
|
|
Question:
|
|
{query_str}
|
|
"""
|
|
)
|
|
]
|
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
|
|
answer = query_engine.query(query)
|
|
|
|
if hasattr(answer, 'response'):
|
|
return answer.response
|
|
elif isinstance(answer, dict) and 'response' in answer:
|
|
return answer['response']
|
|
else:
|
|
return "Sorry, I couldn't find an answer."
|
|
|
|
|
|
|
|
st.title("Chat with your PDF📄")
|
|
st.markdown("Built by [vivek](https://github.com/saravivek-cyber)")
|
|
st.markdown("chat here")
|
|
|
|
if 'messages' not in st.session_state:
|
|
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
|
|
|
|
with st.sidebar:
|
|
st.title("Menu:")
|
|
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
|
|
if st.button("Submit & Process"):
|
|
with st.spinner("Processing..."):
|
|
filepath = "data/saved_pdf.pdf"
|
|
with open(filepath, "wb") as f:
|
|
f.write(uploaded_file.getbuffer())
|
|
|
|
data_ingestion()
|
|
st.success("Done")
|
|
|
|
user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
|
|
if user_prompt:
|
|
st.session_state.messages.append({'role': 'user', "content": user_prompt})
|
|
response = handle_query(user_prompt)
|
|
st.session_state.messages.append({'role': 'assistant', "content": response})
|
|
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message['role']):
|
|
st.write(message['content']) |