Spaces:
Runtime error
Runtime error
Commit
·
8842208
1
Parent(s):
3c7e9f6
Add application file
Browse files- Dockerfile +21 -0
- app.py +136 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Start from a standard Python base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set the working directory inside the container
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Copy the requirements file into the container
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
# Install the Python dependencies
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
# Copy your application code into the container
|
14 |
+
COPY ./app.py /code/app.py
|
15 |
+
|
16 |
+
# Expose the port the app runs on
|
17 |
+
EXPOSE 8000
|
18 |
+
|
19 |
+
# The command to run your FastAPI app using uvicorn
|
20 |
+
# This will be run when the container starts
|
21 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
|
3 |
+
import librosa
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
from functools import lru_cache
|
9 |
+
|
10 |
+
app = FastAPI(title="Speech Emotion Recognition API")
|
11 |
+
|
12 |
+
# Global variables for model caching
|
13 |
+
model = None
|
14 |
+
feature_extractor = None
|
15 |
+
id2label = None
|
16 |
+
|
17 |
+
@lru_cache(maxsize=1)
|
18 |
+
def load_model():
|
19 |
+
"""Load model once and cache it for CPU optimization"""
|
20 |
+
global model, feature_extractor, id2label
|
21 |
+
|
22 |
+
model_id = "firdhokk/speech-emotion-recognition-with-openai-whisper-large-v3"
|
23 |
+
|
24 |
+
# Force CPU usage for free tier
|
25 |
+
device = "cpu"
|
26 |
+
torch.set_num_threads(2) # Optimize for free CPU
|
27 |
+
|
28 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
31 |
+
device_map="cpu"
|
32 |
+
)
|
33 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
do_normalize=True
|
36 |
+
)
|
37 |
+
id2label = model.config.id2label
|
38 |
+
|
39 |
+
return model, feature_extractor, id2label
|
40 |
+
|
41 |
+
def preprocess_audio(audio_path, feature_extractor, max_duration=30.0):
|
42 |
+
"""Preprocess audio with memory optimization"""
|
43 |
+
audio_array, sampling_rate = librosa.load(
|
44 |
+
audio_path,
|
45 |
+
sr=feature_extractor.sampling_rate,
|
46 |
+
duration=max_duration # Limit duration for CPU efficiency
|
47 |
+
)
|
48 |
+
|
49 |
+
max_length = int(feature_extractor.sampling_rate * max_duration)
|
50 |
+
if len(audio_array) > max_length:
|
51 |
+
audio_array = audio_array[:max_length]
|
52 |
+
else:
|
53 |
+
audio_array = np.pad(audio_array, (0, max_length - len(audio_array)))
|
54 |
+
|
55 |
+
inputs = feature_extractor(
|
56 |
+
audio_array,
|
57 |
+
sampling_rate=feature_extractor.sampling_rate,
|
58 |
+
max_length=max_length,
|
59 |
+
truncation=True,
|
60 |
+
return_tensors="pt",
|
61 |
+
)
|
62 |
+
return inputs
|
63 |
+
|
64 |
+
@app.on_event("startup")
|
65 |
+
async def startup_event():
|
66 |
+
"""Load model on startup"""
|
67 |
+
load_model()
|
68 |
+
|
69 |
+
@app.post("/predict-emotion")
|
70 |
+
async def predict_emotion(file: UploadFile = File(...)):
|
71 |
+
"""Predict emotion from uploaded audio file"""
|
72 |
+
try:
|
73 |
+
# Validate file type
|
74 |
+
if not file.filename.lower().endswith(('.wav', '.mp3', '.m4a', '.flac')):
|
75 |
+
raise HTTPException(status_code=400, detail="Unsupported audio format")
|
76 |
+
|
77 |
+
# Save uploaded file temporarily
|
78 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
79 |
+
content = await file.read()
|
80 |
+
tmp_file.write(content)
|
81 |
+
tmp_file_path = tmp_file.name
|
82 |
+
|
83 |
+
try:
|
84 |
+
# Load cached model
|
85 |
+
model, feature_extractor, id2label = load_model()
|
86 |
+
|
87 |
+
# Preprocess and predict
|
88 |
+
inputs = preprocess_audio(tmp_file_path, feature_extractor)
|
89 |
+
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = model(**inputs)
|
92 |
+
logits = outputs.logits
|
93 |
+
predicted_id = torch.argmax(logits, dim=-1).item()
|
94 |
+
predicted_label = id2label[predicted_id]
|
95 |
+
|
96 |
+
# Get confidence scores
|
97 |
+
probabilities = torch.softmax(logits, dim=-1)
|
98 |
+
confidence = probabilities[0][predicted_id].item()
|
99 |
+
|
100 |
+
return {
|
101 |
+
"predicted_emotion": predicted_label,
|
102 |
+
"confidence": round(confidence, 4),
|
103 |
+
"all_emotions": {
|
104 |
+
id2label[i]: round(probabilities[0][i].item(), 4)
|
105 |
+
for i in range(len(id2label))
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
finally:
|
110 |
+
# Clean up temporary file
|
111 |
+
os.unlink(tmp_file_path)
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
115 |
+
|
116 |
+
@app.get("/health")
|
117 |
+
async def health_check():
|
118 |
+
"""Health check endpoint"""
|
119 |
+
return {"status": "healthy", "model_loaded": model is not None}
|
120 |
+
|
121 |
+
@app.get("/")
|
122 |
+
async def root():
|
123 |
+
"""Root endpoint with API information"""
|
124 |
+
return {
|
125 |
+
"message": "Speech Emotion Recognition API",
|
126 |
+
"model": "Whisper Large V3",
|
127 |
+
"emotions": ["Angry", "Disgust", "Fearful", "Happy", "Neutral", "Sad", "Surprised"],
|
128 |
+
"endpoints": {
|
129 |
+
"predict": "/predict-emotion",
|
130 |
+
"health": "/health"
|
131 |
+
}
|
132 |
+
}
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
import uvicorn
|
136 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
librosa
|
6 |
+
numpy
|
7 |
+
python-multipart
|
8 |
+
accelerate
|