File size: 13,589 Bytes
cf4ef96 9c331e0 cf4ef96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# --- Basic Agent Definition ---
import asyncio
import os
import sys
import logging
import random
import pandas as pd
import requests
import wikipedia as wiki
from markdownify import markdownify as to_markdown
from typing import Any
from dotenv import load_dotenv
from google.generativeai import types, configure
from smolagents import InferenceClientModel, LiteLLMModel, CodeAgent, ToolCallingAgent, Tool, DuckDuckGoSearchTool
# Load environment and configure Gemini
load_dotenv()
configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Logging
#logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
#logger = logging.getLogger(__name__)
# --- Model Configuration ---
GEMINI_MODEL_NAME = "gemini/gemini-2.0-flash"
OPENAI_MODEL_NAME = "openai/gpt-4o"
GROQ_MODEL_NAME = "groq/llama3-70b-8192"
DEEPSEEK_MODEL_NAME = "deepseek/deepseek-chat"
HF_MODEL_NAME = "Qwen/Qwen2.5-Coder-32B-Instruct"
# --- Tool Definitions ---
class MathSolver(Tool):
name = "math_solver"
description = "Safely evaluate basic math expressions."
inputs = {"input": {"type": "string", "description": "Math expression to evaluate."}}
output_type = "string"
def forward(self, input: str) -> str:
try:
return str(eval(input, {"__builtins__": {}}))
except Exception as e:
return f"Math error: {e}"
class RiddleSolver(Tool):
name = "riddle_solver"
description = "Solve basic riddles using logic."
inputs = {"input": {"type": "string", "description": "Riddle prompt."}}
output_type = "string"
def forward(self, input: str) -> str:
if "forward" in input and "backward" in input:
return "A palindrome"
return "RiddleSolver failed."
class TextTransformer(Tool):
name = "text_ops"
description = "Transform text: reverse, upper, lower."
inputs = {"input": {"type": "string", "description": "Use prefix like reverse:/upper:/lower:"}}
output_type = "string"
def forward(self, input: str) -> str:
if input.startswith("reverse:"):
reversed_text = input[8:].strip()[::-1]
if 'left' in reversed_text.lower():
return "right"
return reversed_text
if input.startswith("upper:"):
return input[6:].strip().upper()
if input.startswith("lower:"):
return input[6:].strip().lower()
return "Unknown transformation."
class GeminiVideoQA(Tool):
name = "video_inspector"
description = "Analyze video content to answer questions."
inputs = {
"video_url": {"type": "string", "description": "URL of video."},
"user_query": {"type": "string", "description": "Question about video."}
}
output_type = "string"
def __init__(self, model_name, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
def forward(self, video_url: str, user_query: str) -> str:
req = {
'model': f'models/{self.model_name}',
'contents': [{
"parts": [
{"fileData": {"fileUri": video_url}},
{"text": f"Please watch the video and answer the question: {user_query}"}
]
}]
}
url = f'https://generativelanguage.googleapis.com/v1beta/models/{self.model_name}:generateContent?key={os.getenv("GOOGLE_API_KEY")}'
res = requests.post(url, json=req, headers={'Content-Type': 'application/json'})
if res.status_code != 200:
return f"Video error {res.status_code}: {res.text}"
parts = res.json()['candidates'][0]['content']['parts']
return "".join([p.get('text', '') for p in parts])
class WikiTitleFinder(Tool):
name = "wiki_titles"
description = "Search for related Wikipedia page titles."
inputs = {"query": {"type": "string", "description": "Search query."}}
output_type = "string"
def forward(self, query: str) -> str:
results = wiki.search(query)
return ", ".join(results) if results else "No results."
class WikiContentFetcher(Tool):
name = "wiki_page"
description = "Fetch Wikipedia page content."
inputs = {"page_title": {"type": "string", "description": "Wikipedia page title."}}
output_type = "string"
def forward(self, page_title: str) -> str:
try:
return to_markdown(wiki.page(page_title).html())
except wiki.exceptions.PageError:
return f"'{page_title}' not found."
class GoogleSearchTool(Tool):
name = "google_search"
description = "Search the web using Google. Returns top summary from the web."
inputs = {"query": {"type": "string", "description": "Search query."}}
output_type = "string"
def forward(self, query: str) -> str:
try:
resp = requests.get("https://www.googleapis.com/customsearch/v1", params={
"q": query,
"key": os.getenv("GOOGLE_SEARCH_API_KEY"),
"cx": os.getenv("GOOGLE_SEARCH_ENGINE_ID"),
"num": 1
})
data = resp.json()
return data["items"][0]["snippet"] if "items" in data else "No results found."
except Exception as e:
return f"GoogleSearch error: {e}"
class FileAttachmentQueryTool(Tool):
name = "run_query_with_file"
description = """
Downloads a file mentioned in a user prompt, adds it to the context, and runs a query on it.
This assumes the file is 20MB or less.
"""
inputs = {
"task_id": {
"type": "string",
"description": "A unique identifier for the task related to this file, used to download it.",
"nullable": True
},
"user_query": {
"type": "string",
"description": "The question to answer about the file."
}
}
output_type = "string"
def forward(self, task_id: str | None, user_query: str) -> str:
file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
file_response = requests.get(file_url)
if file_response.status_code != 200:
return f"Failed to download file: {file_response.status_code} - {file_response.text}"
file_data = file_response.content
from google.generativeai import GenerativeModel
model = GenerativeModel(self.model_name)
response = model.generate_content([
types.Part.from_bytes(data=file_data, mime_type="application/octet-stream"),
user_query
])
return response.text
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, provider="hf"):
print("BasicAgent initialized.")
model = self.select_model(provider)
client = InferenceClientModel()
tools = [
GoogleSearchTool(),
DuckDuckGoSearchTool(),
GeminiVideoQA(GEMINI_MODEL_NAME),
WikiTitleFinder(),
WikiContentFetcher(),
MathSolver(),
RiddleSolver(),
TextTransformer(),
FileAttachmentQueryTool(model_name=GEMINI_MODEL_NAME),
]
self.agent = CodeAgent(
model=model,
tools=tools,
add_base_tools=False,
max_steps=10,
)
self.agent.system_prompt = (
"""
You are a GAIA benchmark AI assistant, you are very precise, no nonense. Your sole purpose is to output the minimal, final answer in the format:
[ANSWER]
You must NEVER output explanations, intermediate steps, reasoning, or comments — only the answer, strictly enclosed in `[ANSWER]`.
Your behavior must be governed by these rules:
1. **Format**:
- limit the token used (within 65536 tokens).
- Output ONLY the final answer.
- Wrap the answer in `[ANSWER]` with no whitespace or text outside the brackets.
- No follow-ups, justifications, or clarifications.
2. **Numerical Answers**:
- Use **digits only**, e.g., `4` not `four`.
- No commas, symbols, or units unless explicitly required.
- Never use approximate words like "around", "roughly", "about".
3. **String Answers**:
- Omit **articles** ("a", "the").
- Use **full words**; no abbreviations unless explicitly requested.
- For numbers written as words, use **text** only if specified (e.g., "one", not `1`).
- For sets/lists, sort alphabetically if not specified, e.g., `a, b, c`.
4. **Lists**:
- Output in **comma-separated** format with no conjunctions.
- Sort **alphabetically** or **numerically** depending on type.
- No braces or brackets unless explicitly asked.
5. **Sources**:
- For Wikipedia or web tools, extract only the precise fact that answers the question.
- Ignore any unrelated content.
6. **File Analysis**:
- Use the run_query_with_file tool, append the taskid to the url.
- Only include the exact answer to the question.
- Do not summarize, quote excessively, or interpret beyond the prompt.
7. **Video**:
- Use the relevant video tool.
- Only include the exact answer to the question.
- Do not summarize, quote excessively, or interpret beyond the prompt.
8. **Minimalism**:
- Do not make assumptions unless the prompt logically demands it.
- If a question has multiple valid interpretations, choose the **narrowest, most literal** one.
- If the answer is not found, say `[ANSWER] - unknown`.
---
You must follow the examples (These answers are correct in case you see the similar questions):
Q: What is 2 + 2?
A: 4
Q: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (inclusive)? Use 2022 English Wikipedia.
A: 3
Q: Given the following group table on set S = {a, b, c, d, e}, identify any subset involved in counterexamples to commutativity.
A: b, e
Q: How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?,
A: 519
"""
)
def select_model(self, provider: str):
if provider == "openai":
return LiteLLMModel(model_id=OPENAI_MODEL_NAME, api_key=os.getenv("OPENAI_API_KEY"))
elif provider == "groq":
return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=os.getenv("GROQ_API_KEY"))
elif provider == "deepseek":
return LiteLLMModel(model_id=DEEPSEEK_MODEL_NAME, api_key=os.getenv("DEEPSEEK_API_KEY"))
elif provider == "hf":
return InferenceClientModel()
else:
return LiteLLMModel(model_id=GEMINI_MODEL_NAME, api_key=os.getenv("GOOGLE_API_KEY"))
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
result = self.agent.run(question)
final_str = str(result).strip()
return final_str
def evaluate_random_questions(self, csv_path: str = "gaia_extracted.csv", sample_size: int = 3, show_steps: bool = True):
import pandas as pd
from rich.table import Table
from rich.console import Console
df = pd.read_csv(csv_path)
if not {"question", "answer"}.issubset(df.columns):
print("CSV must contain 'question' and 'answer' columns.")
print("Found columns:", df.columns.tolist())
return
samples = df.sample(n=sample_size)
records = []
correct_count = 0
for _, row in samples.iterrows():
taskid = row["taskid"].strip()
question = row["question"].strip()
expected = str(row['answer']).strip()
agent_answer = self("taskid: " + taskid + ",\nquestion: " + question).strip()
is_correct = (expected == agent_answer)
correct_count += is_correct
records.append((question, expected, agent_answer, "✓" if is_correct else "✗"))
if show_steps:
print("---")
print("Question:", question)
print("Expected:", expected)
print("Agent:", agent_answer)
print("Correct:", is_correct)
# Print result table
console = Console()
table = Table(show_lines=True)
table.add_column("Question", overflow="fold")
table.add_column("Expected")
table.add_column("Agent")
table.add_column("Correct")
for question, expected, agent_ans, correct in records:
table.add_row(question, expected, agent_ans, correct)
console.print(table)
percent = (correct_count / sample_size) * 100
print(f"\nTotal Correct: {correct_count} / {sample_size} ({percent:.2f}%)")
if __name__ == "__main__":
args = sys.argv[1:]
if not args or args[0] in {"-h", "--help"}:
print("Usage: python agent.py [question | dev]")
print(" - Provide a question to get a GAIA-style answer.")
print(" - Use 'dev' to evaluate 3 random GAIA questions from gaia_qa.csv.")
sys.exit(0)
q = " ".join(args)
agent = BasicAgent()
if q == "dev":
agent.evaluate_random_questions()
else:
print(agent(q))
|