Spaces:
Runtime error
Runtime error
import platform | |
import gradio as gr | |
from pathlib import Path | |
import logging | |
import asyncio | |
from typing import Any, Optional, Dict, List, Union, Tuple | |
from ..services import TrainingService, CaptioningService, SplittingService, ImportService | |
from ..config import ( | |
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, | |
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, | |
MODEL_TYPES, SMALL_TRAINING_BUCKETS | |
) | |
from ..utils import count_media_files, format_media_title, TrainingLogParser | |
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
httpx_logger = logging.getLogger('httpx') | |
httpx_logger.setLevel(logging.WARN) | |
class VideoTrainerUI: | |
def __init__(self): | |
"""Initialize services and tabs""" | |
# Initialize core services | |
self.trainer = TrainingService() | |
self.splitter = SplittingService() | |
self.importer = ImportService() | |
self.captioner = CaptioningService() | |
# Recovery status from any interrupted training | |
recovery_result = self.trainer.recover_interrupted_training() | |
self.recovery_status = recovery_result.get("status", "unknown") | |
self.ui_updates = recovery_result.get("ui_updates", {}) | |
# Initialize log parser | |
self.log_parser = TrainingLogParser() | |
# Shared state for tabs | |
self.state = { | |
"recovery_result": recovery_result | |
} | |
# Initialize tabs dictionary (will be populated in create_ui) | |
self.tabs = {} | |
self.tabs_component = None | |
def create_ui(self): | |
"""Create the main Gradio UI""" | |
with gr.Blocks(title="🎥 Video Model Studio") as app: | |
gr.Markdown("# 🎥 Video Model Studio") | |
# Create main tabs component | |
with gr.Tabs() as self.tabs_component: | |
# Initialize tab objects | |
self.tabs["import_tab"] = ImportTab(self) | |
self.tabs["split_tab"] = SplitTab(self) | |
self.tabs["caption_tab"] = CaptionTab(self) | |
self.tabs["train_tab"] = TrainTab(self) | |
self.tabs["manage_tab"] = ManageTab(self) | |
# Create tab UI components | |
for tab_id, tab_obj in self.tabs.items(): | |
tab_obj.create(self.tabs_component) | |
# Connect event handlers | |
for tab_id, tab_obj in self.tabs.items(): | |
tab_obj.connect_events() | |
# Add app-level timers for auto-refresh functionality | |
self._add_timers() | |
# Initialize app state on load | |
app.load( | |
fn=self.initialize_app_state, | |
outputs=[ | |
self.tabs["split_tab"].components["video_list"], | |
self.tabs["caption_tab"].components["training_dataset"], | |
self.tabs["train_tab"].components["start_btn"], | |
self.tabs["train_tab"].components["stop_btn"], | |
self.tabs["train_tab"].components["pause_resume_btn"], | |
self.tabs["train_tab"].components["training_preset"], | |
self.tabs["train_tab"].components["model_type"], | |
self.tabs["train_tab"].components["lora_rank"], | |
self.tabs["train_tab"].components["lora_alpha"], | |
self.tabs["train_tab"].components["num_epochs"], | |
self.tabs["train_tab"].components["batch_size"], | |
self.tabs["train_tab"].components["learning_rate"], | |
self.tabs["train_tab"].components["save_iterations"] | |
] | |
) | |
return app | |
def _add_timers(self): | |
"""Add auto-refresh timers to the UI""" | |
# Status update timer (every 1 second) | |
status_timer = gr.Timer(value=1) | |
status_timer.tick( | |
fn=self.tabs["train_tab"].get_latest_status_message_logs_and_button_labels, | |
outputs=[ | |
self.tabs["train_tab"].components["status_box"], | |
self.tabs["train_tab"].components["log_box"], | |
self.tabs["train_tab"].components["start_btn"], | |
self.tabs["train_tab"].components["stop_btn"], | |
self.tabs["train_tab"].components["pause_resume_btn"] | |
] | |
) | |
# Dataset refresh timer (every 5 seconds) | |
dataset_timer = gr.Timer(value=5) | |
dataset_timer.tick( | |
fn=self.refresh_dataset, | |
outputs=[ | |
self.tabs["split_tab"].components["video_list"], | |
self.tabs["caption_tab"].components["training_dataset"] | |
] | |
) | |
# Titles update timer (every 6 seconds) | |
titles_timer = gr.Timer(value=6) | |
titles_timer.tick( | |
fn=self.update_titles, | |
outputs=[ | |
self.tabs["split_tab"].components["split_title"], | |
self.tabs["caption_tab"].components["caption_title"], | |
self.tabs["train_tab"].components["train_title"] | |
] | |
) | |
def initialize_app_state(self): | |
"""Initialize all app state in one function to ensure correct output count""" | |
# Get dataset info | |
video_list = self.tabs["split_tab"].list_unprocessed_videos() | |
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption() | |
# Get button states | |
button_states = self.get_initial_button_states() | |
start_btn = button_states[0] | |
stop_btn = button_states[1] | |
pause_resume_btn = button_states[2] | |
# Get UI form values | |
ui_state = self.load_ui_values() | |
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]) | |
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0]) | |
lora_rank_val = ui_state.get("lora_rank", "128") | |
lora_alpha_val = ui_state.get("lora_alpha", "128") | |
num_epochs_val = int(ui_state.get("num_epochs", 70)) | |
batch_size_val = int(ui_state.get("batch_size", 1)) | |
learning_rate_val = float(ui_state.get("learning_rate", 3e-5)) | |
save_iterations_val = int(ui_state.get("save_iterations", 500)) | |
# Return all values in the exact order expected by outputs | |
return ( | |
video_list, | |
training_dataset, | |
start_btn, | |
stop_btn, | |
pause_resume_btn, | |
training_preset, | |
model_type_val, | |
lora_rank_val, | |
lora_alpha_val, | |
num_epochs_val, | |
batch_size_val, | |
learning_rate_val, | |
save_iterations_val | |
) | |
def initialize_ui_from_state(self): | |
"""Initialize UI components from saved state""" | |
ui_state = self.load_ui_values() | |
# Return values in order matching the outputs in app.load | |
return ( | |
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]), | |
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]), | |
ui_state.get("lora_rank", "128"), | |
ui_state.get("lora_alpha", "128"), | |
ui_state.get("num_epochs", 70), | |
ui_state.get("batch_size", 1), | |
ui_state.get("learning_rate", 3e-5), | |
ui_state.get("save_iterations", 500) | |
) | |
def update_ui_state(self, **kwargs): | |
"""Update UI state with new values""" | |
current_state = self.trainer.load_ui_state() | |
current_state.update(kwargs) | |
self.trainer.save_ui_state(current_state) | |
# Don't return anything to avoid Gradio warnings | |
return None | |
def load_ui_values(self): | |
"""Load UI state values for initializing form fields""" | |
ui_state = self.trainer.load_ui_state() | |
# Ensure proper type conversion for numeric values | |
ui_state["lora_rank"] = ui_state.get("lora_rank", "128") | |
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128") | |
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70)) | |
ui_state["batch_size"] = int(ui_state.get("batch_size", 1)) | |
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5)) | |
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500)) | |
return ui_state | |
# Add this new method to get initial button states: | |
def get_initial_button_states(self): | |
"""Get the initial states for training buttons based on recovery status""" | |
recovery_result = self.trainer.recover_interrupted_training() | |
ui_updates = recovery_result.get("ui_updates", {}) | |
# Return button states in the correct order | |
return ( | |
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})), | |
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})), | |
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"})) | |
) | |
def update_titles(self) -> Tuple[Any]: | |
"""Update all dynamic titles with current counts | |
Returns: | |
Dict of Gradio updates | |
""" | |
# Count files for splitting | |
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH) | |
split_title = format_media_title( | |
"split", split_videos, 0, split_size | |
) | |
# Count files for captioning | |
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH) | |
caption_title = format_media_title( | |
"caption", caption_videos, caption_images, caption_size | |
) | |
# Count files for training | |
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH) | |
train_title = format_media_title( | |
"train", train_videos, train_images, train_size | |
) | |
return ( | |
gr.Markdown(value=split_title), | |
gr.Markdown(value=caption_title), | |
gr.Markdown(value=f"{train_title} available for training") | |
) | |
def refresh_dataset(self): | |
"""Refresh all dynamic lists and training state""" | |
video_list = self.tabs["split_tab"].list_unprocessed_videos() | |
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption() | |
return ( | |
video_list, | |
training_dataset | |
) |