File size: 6,741 Bytes
2e82b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas_datareader import data
from keras.models import load_model
import streamlit as st
import plotly.graph_objects as go
import datetime as dt
import yfinance as yf
import pandas_ta as ta
from plotly.subplots import make_subplots
from datetime import timedelta
from sklearn.preprocessing import MinMaxScaler

st.set_page_config(page_title='CryptoPredict 2.0', page_icon=':chart_with_upwards_trend:')
st.title('CryptoCurrency Price Prediction')


stocks = [ 'BTC-USD', 'ETH-USD', 'BNB-USD', 'SOL-USD', 'ADA-USD', 'XRP-USD', 'DOT-USD', 'DOGE-USD',
          'AVAX-USD', 'LTC-USD', 'MATIC-USD', 'SHIB-USD']



st.markdown('#')

with st.expander(""):
    col1, col2, col3 = st.columns([1, 1, 1])



    col2.markdown("###### CRYPTO CURRENCIES")
    col2.markdown("""
    | Cryptocurrency | Ticker Symbol |
    | --- | --- |
    | Bitcoin | BTC-USD |
    | Ethereum | ETH-USD |
    | Binance Coin | BNB-USD |
    | Solana | SOL-USD |
    | Cardano | ADA-USD |
    | XRP | XRP-USD |
    | Polkadot | DOT-USD |
    | Dogecoin | DOGE-USD |
    | Avalanche | AVAX-USD |
    | Litecoin | LTC-USD |
    | Polygon | MATIC-USD |
    | Shiba Inu | SHIB-USD |
    """)




user_input = st.selectbox('Enter Stock Ticker', stocks)

st.markdown('# ')

st.markdown('##### Select The Date Range For Technical Analysis')

START = st.date_input('START:', value=pd.to_datetime("2017-01-01"))
TODAY = st.date_input('END (Today):', value=pd.to_datetime("today"))

stock_info = yf.Ticker(user_input).fast_info

# stock_info.keys() for other properties you can explore


st.subheader(user_input)


def load_data(user_input):
    yf.pdr_override()
    daata = data.get_data_yahoo(user_input, start=START, end=TODAY)
    daata.reset_index(inplace=True)
    return daata


df = load_data(user_input)

# describing data

st.subheader('Data Range 2017-Today')
# df= df.reset_index()

st.write(df.tail(10))
st.write(df.describe())
# Force lowercase (optional)
df.columns = [x.lower() for x in df.columns]



st.subheader("Prediction of Stock Price")

# train test split
data_training = pd.DataFrame(df['close'][0:int(len(df) * 0.70)])
data_testing = pd.DataFrame(df['close'][int(len(df) * 0.70): int(len(df))])

st.write("training data: ", data_training.shape)
st.write("testing data: ", data_testing.shape)

# scaling of data using min max scaler (0,1)


scaler = MinMaxScaler(feature_range=(0, 1))

data_training_array = scaler.fit_transform(data_training)

# Load model
model = load_model("lstm_model_2.h5")

# testing part
past_100_days = data_training.tail(30)

final_df = past_100_days.append(data_testing, ignore_index=True)

input_data = scaler.fit_transform(final_df)

x_test = []
y_test = []

for i in range(100, input_data.shape[0]):
    x_test.append(input_data[i - 100: i])
    y_test.append(input_data[i, 0])
x_test, y_test = np.array(x_test), np.array(y_test)

y_predicted = model.predict(x_test)

scaler = scaler.scale_

scale_factor = 1 / scaler[0]

y_predicted = y_predicted * scale_factor

y_test = y_test * scale_factor



st.subheader('Stock Price Prediction by Date')

df1 = df.reset_index()['close']
scaler = MinMaxScaler(feature_range=(0, 1))
df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))

# datemax="24/06/2022"
datemax = dt.datetime.strftime(dt.datetime.now() - timedelta(1), "%d/%m/%Y")
datemax = dt.datetime.strptime(datemax, "%d/%m/%Y")
x_input = df1[:].reshape(1, -1)
temp_input = list(x_input)
temp_input = temp_input[0].tolist()

date1 = st.date_input("Enter Date in this format yyyy-mm-dd")

result = st.button("Predict")
# st.write(result)
if result:
    from datetime import datetime

    my_time = datetime.min.time()
    date1 = datetime.combine(date1, my_time)
    # date1=str(date1)
    # date1=dt.datetime.pastime(time_str,"%Y-%m-%d")

    nDay = date1 - datemax
    nDay = nDay.days

    date_rng = pd.date_range(start=datemax, end=date1, freq='D')
    date_rng = date_rng[1:date_rng.size]
    lst_output = []
    n_steps = x_input.shape[1]
    i = 0

    while i <= nDay:

        if len(temp_input) > n_steps:
            # print(temp_input)
            x_input = np.array(temp_input[1:])
            print("{} day input {}".format(i, x_input))
            x_input = x_input.reshape(1, -1)
            x_input = x_input.reshape((1, n_steps, 1))
            # print(x_input)
            yhat = model.predict(x_input, verbose=0)
            print("{} day output {}".format(i, yhat))
            temp_input.extend(yhat[0].tolist())
            temp_input = temp_input[1:]
            # print(temp_input)
            lst_output.extend(yhat.tolist())
            i = i + 1
        else:
            x_input = x_input.reshape((1, n_steps, 1))
            yhat = model.predict(x_input, verbose=0)
            print(yhat[0])
            temp_input.extend(yhat[0].tolist())
            print(len(temp_input))
            lst_output.extend(yhat.tolist())
            i = i + 1
    res = scaler.inverse_transform(lst_output)
    # output = res[nDay-1]

    output = res[nDay]

    st.write("*Predicted Price for Date :*", date1, "*is*", np.round(output[0], 2))
    st.success('The Price is {}'.format(np.round(output[0], 2)))

    # st.write("predicted price : ",output)

    predictions = res[res.size - nDay:res.size]
    print(predictions.shape)
    predictions = predictions.ravel()
    print(type(predictions))
    print(date_rng)
    print(predictions)
    print(date_rng.shape)


    @st.cache_data
    def convert_df(df):
        return df.to_csv().encode('utf-8')


    df = pd.DataFrame(data=date_rng)
    df['Predictions'] = predictions.tolist()
    df.columns = ['Date', 'Price']
    st.write(df)
    csv = convert_df(df)
    st.download_button(
        "Press to Download",
        csv,
        "file.csv",
        "text/csv",
        key='download-csv'
    )
    # visualization

    fig = plt.figure(figsize=(10, 6))
    xpoints = date_rng
    ypoints = predictions

    plt.plot(xpoints, ypoints, color='blue', marker='o', linestyle='-', linewidth=2,
             markersize=5)  # Customize line style and marker
    plt.xticks(rotation=45, fontsize=10)  # Rotate x-axis labels and adjust fontsize
    plt.yticks(fontsize=10)  # Adjust fontsize of y-axis labels
    plt.xlabel('Date', fontsize=12)  # Set x-axis label and adjust fontsize
    plt.ylabel('Price', fontsize=12)  # Set y-axis label and adjust fontsize
    plt.title('Cryptocurrency Price Prediction', fontsize=14)  # Set plot title and adjust fontsize
    plt.grid(True, linestyle='--', alpha=0.5)  # Add grid lines with linestyle and transparency
    plt.tight_layout()  # Adjust layout to prevent clipping of labels

    # Display the plot in Streamlit
    st.pyplot(fig)