import asyncio import os import time from pathlib import Path from concurrent.futures import ThreadPoolExecutor import uuid import google.generativeai as genai from fasthtml.common import ( Div, Img, Main, P, Script, Link, fast_app, HighlightJS, FileResponse, RedirectResponse, Aside, StreamingResponse, JSONResponse, serve, ) from shad4fast import ShadHead from vespa.application import Vespa import base64 from fastcore.parallel import threaded from PIL import Image from backend.colpali import get_query_embeddings_and_token_map, gen_similarity_maps from backend.modelmanager import ModelManager from backend.vespa_app import VespaQueryClient from frontend.app import ( ChatResult, Home, Search, SearchBox, SearchResult, SimMapButtonPoll, SimMapButtonReady, AboutThisDemo, ) from frontend.layout import Layout highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="") highlight_js_theme = Script(src="/static/js/highlightjs-theme.js") highlight_js = HighlightJS( langs=["python", "javascript", "java", "json", "xml"], dark="github-dark", light="github", ) overlayscrollbars_link = Link( rel="stylesheet", href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css", type="text/css", ) overlayscrollbars_js = Script( src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js" ) awesomplete_link = Link( rel="stylesheet", href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css", type="text/css", ) awesomplete_js = Script( src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js" ) sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js") app, rt = fast_app( htmlkw={"cls": "grid h-full"}, pico=False, hdrs=( highlight_js, highlight_js_theme_link, highlight_js_theme, overlayscrollbars_link, overlayscrollbars_js, awesomplete_link, awesomplete_js, sselink, ShadHead(tw_cdn=False, theme_handle=True), ), ) vespa_app: Vespa = VespaQueryClient() thread_pool = ThreadPoolExecutor() # Gemini config genai.configure(api_key=os.getenv("GEMINI_API_KEY")) GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images. If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images, answer with the exact phrase "I am sorry, I do not have enough information in the image to answer your question.". Your response should be HTML formatted, but only simple tags, such as .
, ,
and
tags, bold text will be enclosed in tags, and so on.
But, you should NOT include backticks (`) or HTML tags in your response.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path("static")
IMG_DIR = STATIC_DIR / "full_images"
SIM_MAP_DIR = STATIC_DIR / "sim_maps"
os.makedirs(IMG_DIR, exist_ok=True)
os.makedirs(SIM_MAP_DIR, exist_ok=True)
@app.on_event("startup")
def load_model_on_startup():
app.manager = ModelManager.get_instance()
return
@app.on_event("startup")
async def keepalive():
asyncio.create_task(poll_vespa_keepalive())
return
def generate_query_id(query, ranking_value):
hash_input = (query + ranking_value).encode("utf-8")
return hash(hash_input)
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(STATIC_DIR / filepath)
@rt("/")
def get(session):
if "session_id" not in session:
session["session_id"] = str(uuid.uuid4())
return Layout(Main(Home()))
@rt("/about-this-demo")
def get():
return Layout(Main(AboutThisDemo()))
@rt("/search")
def get(request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query_value, ranking_value)
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query_value),
cls="border-t border-l hidden md:block",
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results2")
def get(query: str, ranking: str):
# 1. Get the results from Vespa (without sim_maps and full_images)
# Call search-endpoint in Vespa sync.
# 2. Kick off tasks to fetch sim_maps and full_images
# Sim maps - call search endpoint async.
# (A) New rank_profile that does not calculate sim_maps.
# (A) Make vespa endpoints take select_fields as a parameter.
# One sim map per image per token.
# the filename query_id_result_idx_token_idx.png
# Full image. based on the doc_id.
# Each of these tasks saves to disk.
# Need a cleanup task to delete old files.
# Polling endpoints for sim_maps and full_images checks if file exists and returns it.
pass
@rt("/fetch_results")
async def get(session, request, query: str, ranking: str):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Get the hash of the query and ranking value
query_id = generate_query_id(query, ranking)
print(f"Query id in /fetch_results: {query_id}")
# Run the embedding and query against Vespa app
model = app.manager.model
processor = app.manager.processor
q_embs, idx_to_token = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await vespa_app.get_result_from_query(
query=query,
q_embs=q_embs,
ranking=ranking,
idx_to_token=idx_to_token,
)
end = time.perf_counter()
print(
f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
)
search_results = vespa_app.results_to_search_results(result, idx_to_token)
get_and_store_sim_maps(
query_id=query_id,
query=query,
q_embs=q_embs,
ranking=ranking,
idx_to_token=idx_to_token,
)
return SearchResult(search_results, query_id)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def poll_vespa_keepalive():
while True:
await asyncio.sleep(5)
await vespa_app.keepalive()
print(f"Vespa keepalive: {time.time()}")
@threaded
def get_and_store_sim_maps(query_id, query: str, q_embs, ranking, idx_to_token):
ranking_sim = ranking + "_sim"
vespa_sim_maps = vespa_app.get_sim_maps_from_query(
query=query,
q_embs=q_embs,
ranking=ranking_sim,
idx_to_token=idx_to_token,
)
img_paths = [
IMG_DIR / f"{query_id}_{idx}.jpg" for idx in range(len(vespa_sim_maps))
]
# All images should be downloaded, but best to wait 5 secs
max_wait = 5
start_time = time.time()
while (
not all([os.path.exists(img_path) for img_path in img_paths])
and time.time() - start_time < max_wait
):
time.sleep(0.2)
if not all([os.path.exists(img_path) for img_path in img_paths]):
print(f"Images not ready in 5 seconds for query_id: {query_id}")
return False
sim_map_generator = gen_similarity_maps(
model=app.manager.model,
processor=app.manager.processor,
device=app.manager.device,
query=query,
query_embs=q_embs,
token_idx_map=idx_to_token,
images=img_paths,
vespa_sim_maps=vespa_sim_maps,
)
for idx, token, token_idx, blended_img_base64 in sim_map_generator:
with open(SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png", "wb") as f:
f.write(base64.b64decode(blended_img_base64))
print(
f"Sim map saved to disk for query_id: {query_id}, idx: {idx}, token: {token}"
)
return True
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str, token_idx: int):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
sim_map_path = SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png"
if not os.path.exists(sim_map_path):
print(f"Sim map not ready for query_id: {query_id}, idx: {idx}, token: {token}")
return SimMapButtonPoll(
query_id=query_id, idx=idx, token=token, token_idx=token_idx
)
else:
return SimMapButtonReady(
query_id=query_id,
idx=idx,
token=token,
token_idx=token_idx,
img_src=sim_map_path,
)
@app.get("/full_image")
async def full_image(docid: str, query_id: str, idx: int):
"""
Endpoint to get the full quality image for a given result id.
"""
img_path = IMG_DIR / f"{query_id}_{idx}.jpg"
if not os.path.exists(img_path):
image_data = await vespa_app.get_full_image_from_vespa(docid)
# image data is base 64 encoded string. Save it to disk as jpg.
with open(img_path, "wb") as f:
f.write(base64.b64decode(image_data))
print(f"Full image saved to disk for query_id: {query_id}, idx: {idx}")
else:
with open(img_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
return Img(
src=f"data:image/jpeg;base64,{image_data}",
alt="something",
cls="result-image w-full h-full object-contain",
)
@rt("/suggestions")
async def get_suggestions(request):
query = request.query_params.get("query", "").lower().strip()
if query:
suggestions = await vespa_app.get_suggestions(query)
if len(suggestions) > 0:
return JSONResponse({"suggestions": suggestions})
return JSONResponse({"suggestions": []})
async def message_generator(query_id: str, query: str):
images = []
num_images = 3 # Number of images before firing chat request
max_wait = 10 # seconds
start_time = time.time()
# Check if full images are ready on disk
while len(images) < num_images and time.time() - start_time < max_wait:
for idx in range(num_images):
if not os.path.exists(IMG_DIR / f"{query_id}_{idx}.jpg"):
print(
f"Message generator: Full image not ready for query_id: {query_id}, idx: {idx}"
)
continue
else:
print(
f"Message generator: image ready for query_id: {query_id}, idx: {idx}"
)
images.append(Image.open(IMG_DIR / f"{query_id}_{idx}.jpg"))
await asyncio.sleep(0.2)
# yield message with number of images ready
yield f"event: message\ndata: Generating response based on {len(images)} images.\n\n"
if not images:
yield "event: message\ndata: I am sorry, I do not have enough information in the image to answer your question.\n\n"
yield "event: close\ndata: \n\n"
return
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "
")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.1)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
print(f"Starting app with hot reload: {HOT_RELOAD}")
serve(port=7860, reload=HOT_RELOAD)